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1 Introduction

1.1 Problem description and context

Slope stability assessments of dikes, just like most geotechnical problems, are typically domi-
nated by the large uncertainties in soil properties. The estimated probabilities of (slope) failure
are often rather large compared to the failure rates observed in the field, as experienced in
the Dutch VNK2 project (for details refer to Rijkswaterstaat (2014), illustrated in Figure 1.1).

Figure 1.1: Failure probabilities of the dike system Betuwe/Tieler- en Culemborgerwaar-
den according to Rijkswaterstaat (2014)

Reliability analyses as carried out in the VNK2 project rely on physics-based limit state models
and probabilistic models of the relevant random variables. The input to the analysis is typically
based on site investigation data, laboratory testing and geological insights. Observations of
past performance such as survival of significant loading are not incorporated in the assess-
ments, while such information can reduce the uncertainties substantially and lead to more
accurate safety assessments. Similar issues have been encountered in risk screenings of
the federal levees in the U.S. and dealt with by using so-called likelihood ratios (Margo et al.,
2009), yet that approach is not easily incorporated in the Dutch approach with physics-based
limit state models.

Rijkswaterstaat is conducting a project to operationalize the concept of Reliability Updating
with Past Performance (RUPP; in Dutch often referred to as bewezen sterkte) for advanced
safety assessments and reinforcement designs of the primary Dutch flood defenses. Reliabil-
ity updating means to update our estimate of the probability of failure using observations of
past performance, here specifically the survival of observed load conditions.

The focus in this first phase of the project is on the failure mode of instability of the inner
slope, as many dikes were found not to meet the safety criteria for this failure mode in the
statutory safety assessment of the Dutch primary flood defenses (IVW, 2011). The current
work builds upon the concepts published in the Technisch Rapport Actuele Sterkte bij Dijken
(ENW, 2009) and the work by Calle (2005), as well as more recently proposed approaches
by Schweckendiek (2014), which have opened up new opportunities.
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1.2 Objectives of the long-term development project

The main objective of the envisaged development efforts for the long-term project is to en-
able practitioners to work with use reliability updating in advanced safety assessments and
reinforcement designs of the primary Dutch flood defenses. This implies the following sub-
objectives:

1 to develop and document a scientifically sound and practicable approach,
2 to confirm and illustrate the practical applicability of the approach on test cases with a

level of detail and complexity which is representative for real life conditions.

The long-term development project aims to deliver four main products:

1 Background report containing a scientifically sound description of the theory (current
report),

2 Case studies for testing and illustrating the applicability,
3 Manual containing a description of the method and its application for practitioners,
4 Software facilitating (a) probabilistic slope stability analysis and (b) use of the RUPP

method by practitioners.

These products are envisaged to complement and partially replace earlier guidance on re-
liability updating with past performance in the so-called TRAS (Dutch: Technisch Rapport
Actuele Sterkte; ENW, 2009). The method described in the TRAS has shortcomings as
demonstrated in the accompanying test case report (Schweckendiek et al., 2016) and it hardly
has been applied in practice (only one known case). Objectives of the current developments
are also to overcome the shortcomings of the TRAS method and to provide more explicit
guidance to enable and promote use of the approach in practice.

Note that this background report (1) and the accompanying test case report (2) are primarily
aimed at an expert reader in order to assess the soundness of the approach and the envis-
aged application, while the manual (3) will mainly address a broader audience.

1.3 Objectives of this report and approach

The main objective is to describe a method which enables incorporating past performance
information in reliability analysis for slope stability of dikes. In the present report we particularly
focus on the failure mode ’slope instability’, but the method is generic and also applicable to
other failure modes. A basic requirement is that the end result is applicable in the Dutch safety
assessment framework for flood defenses as described in Schweckendiek et al. (2012) and
summarized in chapter 2.

1.3.1 Bayesian reliability updating

The basis for the proposed approach is Bayesian posterior analysis, in combination with relia-
bility analysis often called "Bayesian reliability updating". Bayesian reliability updating can be
implemented with most conventional reliability analysis methods used in the civil engineering
domain such as (Crude) Monte Carlo simulation (MCS), Importance Sampling (IS), the First-
order reliability method (FORM) or Numerical Integration (NI) (Straub, 2014). The descriptions
in this report (chapter 3) will discuss MCS for illustration purposes, as the implementation of
that method is rather straightforward.

The drawback of an implementation with MCS is the large number of required evaluations of
the performance function (or limit state). The analysis can be intractable for computationally
expensive models, as is the case for slope stability analysis. To this end, we will also de-
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scribe an approximation method in chapter 4 using so-called fragility curves, which express
the cumulative resistance to the outside water level against the dike.

As some uncertainties cannot be modeled with continuous probability distribution functions,
the need for using discrete scenarios arises. Hence, we will also explain the implementation
for discrete scenarios in chapter 5.

1.3.2 Application to slope instability

Conceptually, the application of the proposed approach to slope instability of dikes is straight-
forward. Yet, the underlying probabilistic analyses can be implemented in various ways. Chap-
ter 6 provides an overview of the recommended implementation choices for the Dutch context
and addresses modeling issues which require specific attention with past performance-based
analyses. A basic choice in this present implementation is to work with 2D limit equilibrium
models (LEM) such as Uplift-Van (see Figure 1.2), as these are commonly used for conditions
with non-circular slip planes in the Netherlands.

Figure 1.2: Illustration of a critical slip plane with the Uplift-Van limit equilibrium method

1.4 Visual outline

Figure 1.3: Visual outline of the report
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2 Safety assessment

The presented work aims at application of reliability updating in the safety assessment frame-
work which is envisaged to come into force in the Netherlands in 2017. The essence of the
framework is that there is a risk-motivated and legally established acceptable probability of
failure for a reach of the system of flood defenses (Deltaprogramma, 2014). Furthermore,
Schweckendiek et al. (2012) outlines a procedure to determine the target reliability (i.e. ac-
ceptable probability of failure) for specific failure modes and dike segments, as described
below.

2.1 Legal requirement for a dike reach

The project WV21 (see www.rijksoverheid.nl) investigated updating the safety standards by
acceptable risk criteria based on individual risk, group risk and (societal) cost-benefit analysis.
The information has served as input for a political decision on new safety standards. The
resulting new safety standards for primary flood defenses in the Netherlands are specified in
terms of acceptable (annual) probabilities of flooding as illustrated in Figure 2.1.

The project WBI-20171 is currently developing safety assessment methods for levees, dunes
and hydraulic structures in flood defense systems in the Netherlands with semi-probabilistic
as well as fully probabilistic methods and criteria. The proposed approach is appropriate for
application to probabilistic assessments as envisaged in the WBI-2017 project for all safety
assessments from 2017 onwards.

The basic safety requirement in the Netherlands will be an acceptable annual probability of
failure pT,sys or, equivalently, annual target reliability βT,sys for a dike segment or flood de-
fense (sub-)system. For practical reasons, these protection standards need to be translated
into more specific requirements per levee reach and failure mode.

2.2 Target reliability per failure mode

Practically workable safety requirements are usually expressed per failure mechanism and
per element (e.g., homogeneous dike reach) in terms of a specific target reliability (pT or
βT ). To derive such a specific target reliability we need to account for the different failure
mechanisms involved as well as for the system reliability aspects such as the length-effect
(see e.g. Kanning, 2012). The length-effect arises from the fact that all dike or levee reaches
in the protection system contribute to the probability of (system) failure and that the probability
of failure increases with the length of an element. Figure 2.2 depicts the conceptual cohesion
of the safety framework.

The first step in deriving the specific target reliabilities is assigning target reliability values for
each failure mode βT,mode for the whole protection system. The requirement in the WBI-2017
approach is that the sum of the target probabilities per failure mode should not exceed the
target system probability of failure (

∑
pT,mode < pT,sys), which is a conservative criterion

because the implicit assumption is that the failure modes are mutually exclusive, whereas in
practice positive correlation is often present (e.g. through common random variables). The
default share of slope instability with respect to the total probability of failure is 4 %, meaning
that pT,inst = 0.04 · pT,sys.

1Information on the WBI-2017 project is provided on http://www.helpdeskwater.nl.
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Figure 2.1: Acceptable annual probabilities of failure for future safety assessments in the
Netherlands from 2017 (Deltaprogramma, 2014). The warmer colors repre-
sent higher target reliabilities.

2.3 Length-effect

The second step is to take the so-called length effect (see e.g. Kanning 2012) into account. To
this end we use a failure mode-specific equivalent correlation length leq in deriving the "local"
target reliability for slope instability using

pT =
pT,inst

1 + L/leq
(2.1)

where L is the total length of considered reach (contributing to the probability of failure for
instability). The basic theory behind this approach is based on considering the longitudinal
variability of the dike as one-dimensional random field and determining the probability of ex-
ceeding the limit state as an outcrossing problem. A detailed description of the length-effect
and its treatment is beyond the scope of this report; for details reference is made to Vanmar-
cke (2011), Kanning (2012) and Schweckendiek et al. (2012).

The reliability analyses in the proposed approach as discussed in chapter 6 will be based on
simple random variables, not random fields. That means that they consider the uncertainty
in the random variables as representative for the considered dike segment. Thus, the spatial
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Figure 2.2: Steps in deriving target reliabilities from acceptable risk criteria adopted from
Schweckendiek et al. (2012)

variability in longitudinal direction is not considered explicitly in the analysis but implicitly.
It is noteworthy that this approach effectively means that the analyses works with infinite
correlation lengths of the random variables in longitudinal direction and that the effects of
spatial variability are considered through the reliability target. Note that the spatial variability in
the cross-sectional dimension can be accounted for explicitly, for example by spatial averaging
where necessary.

In summary, the target reliability for slope instability of dikes in the proposed approach is
determined by:

pT =
ω · pT,sys
1 + L/leq

(2.2)

where
ω share of the failure mode of the total acceptable probability of failure
pT,sys total acceptable annual probability of failure per reach (all failure modes; a reach is typically tens of km long)
L length of the reach (restricted to the portionof the reach with potential contribution to the probability of failure) [m]
leq equivalent auto-correlation length [m]

While values for pT,sys will be legally established per reach, appropriate values for the other
parameters (L, leq and ω) will be proposed by the WBI-2017 project or can be substantiated
with local data.

The essential implicit assumption in using the target reliability βT as assessment criterion
not only for the prior (i.e. conventional) reliability estimate but also for the posterior (i.e. after
reliability updating) is that the length effect does not significantly increase through the posterior
analysis relatively speaking. In other words, the equivalent correlation length (leq) of the
considered failure mode does not decrease. Or similarly the ratio of the probability of failure
per reach and per segment (i.e. pT,mode/pT ) does not increase.

Recent findings by Roscoe et al. (2016) support this assumption; in their study the rela-
tive length-effect decreases after updating for all contemplated examples. Furthermore, ap-
pendix A contains a sensitivity analysis with one-dimensional random fields to examine the
change of length effect with reliability updating. The results confirm that mostly the posterior
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length-effect is less than or roughly equal to the prior length effect. Only for rather high stan-
dard deviations of the resistance we have seen an increase of the length-effect by a factor two
(which is not much in terms of probability).

Our recommendation from the information at hand is to stick to the cross-sectional target
reliability pT as formulated above also for updated probabilities of failure. Even though a
slight increase of the length effect can occur, this is rather unlikely or rare. We need to bear
in mind that the default parameters to account for the length effect in WBI-2017 were chosen
conservatively and contain some margin.
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3 Reliability updating

This chapter contains the definitions and descriptions of the methods used for reliability anal-
ysis and reliability updating in the proposed approach. The finally obtained probabilities of
failure or reliability indices can be directly assessed by comparing with the target probabilities
of failure pT and target reliability indices βT as discussed in chapter 2.

3.1 Reliability analysis (prior analysis)

3.1.1 Failure (undesired event)

Failure refers to an undesired event, not necessarily to the collapse of a structure, which we
model by means of a (continuous) performance function g(X) such that the performance
function assuming negative values represents the failure domain F :

F = {g(X) < 0} (3.1)

where X is the vector of random variables. In the specific case of slope stability, the result
of a limit equilibrium analysis is typically a stability factor SF , in which case the performance
function can be expressed as g = SF − 1 (possibly complemented with a model factor
accounting for the uncertainty in the limit equilibrium model), because stability factors are
defined such that values below one imply failure (typically based on moment equilibrium).

3.1.2 Probability of failure

Using the definitions of failure and of the performance function, the probability of failure (i.e.,
unwanted event) is given by:

P (F ) = P (g(X) < 0) =

∫
g(X)<0

fX(x)dx (3.2)

where fX(x) is the joint probability density function (PDF) of X.

3.1.3 Fragility curves

Fragility curves represent the probability of failure conditioned on a dominant load variable s:

P (F |s) =

∫
g(R,s)<0

fR(r)dr (3.3)

where R is the vector of all other random variables except s. That implies that a fragility curve
is in fact equivalent to the cumulative distribution function (CDF) of the overall resistance R:

P (F |s) = FR(s) (3.4)

where FR is the CDF1 of R. Modelling fragility as a CDF is a common assumption in other
fields too, such as seismic risk analysis.

1Formally speaking, there may be conditions where the fragility curve does not reach one for increasing load
levels, in which case the fragility curve is not a proper CDF. In the envisaged area of application, this formal
restriction is hardly ever relevant.
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3.2 Reliability updating (posterior analysis)

Posterior analysis, also called "Bayesian Updating", is the essential ingredient of reliability
updating. The description in this section is restricted to the so-called "direct method" in com-
bination with "inequality information". For a more general treatment refer to, for example,
Straub (2014) or Schweckendiek (2014).

3.2.1 Direct reliability updating

Bayes’ Rule (Bayes, 1763) forms the basis for updating (failure) probabilities with new evi-
dence:

P (F |ε) =
P (F ∩ ε)
P (ε)

=
P (ε|F )P (F )

P (ε)
(3.5)

where F is the failure event to be estimated and ε the observed event or evidence.

The indirect method entails updating the probability distributions of the basic random variables
first and using the updated distributions in a reliability analysis. On the other hand, the direct
method for reliability updating exploits the definition of the conditional probability of failure,
P (F |ε) = P (F ∩ ε)/P (ε), by defining a new limit state of the intersection (cut set) of
failure and the observation (F ∩ ε). While the direct and indirect updating are mathematically
equivalent, the direct method is easier to implement, especially with sampling type of reliability
methods such as Monte Carlo simulation. In this report all descriptions are restricted to the
direct method.

Also using the direct method the updated joint probability distribution of the basic random
variables can be inferred (depending on the reliability method used), which is very useful
for interpretation of the results. Note that only the complete joint probability distribution can
be used for further analysis, as the updating process can change the correlation structure.
Even though a-priori the basic random variables are uncorrelated, there may be correlation
a-posteriori. The updated marginal distributions can still be useful for illustration purposes.

3.2.2 Inequality information

There are two types of information that are distinguished mainly due to the difference in imple-
mentation for reliability updating, equality and inequality information. For the present scope,
we only deal with inequality information. When the evidence implies that our observed quan-
tity is greater than or less than some function of the random variables of interest, the evidence
ε can be formulated as:

ε ≡ {h(x) < 0)} (3.6)

where h( · ) is the observation function. Typical examples of inequality information are failure
(i.e., exceedance of a limit state), survival or the loads reached in incomplete load tests.
Consequently, the posterior probability of failure can be found as follows:

P (F |ε) =
P ({g(X) < 0} ∩ {h(X) < 0})

P (h(X) < 0)
(3.7)

Note that for multiple observations, the total evidence is the intersection of the individual
observations (i.e. their outcome spaces):

ε ≡
⋂
k

{hk(x) < 0} (3.8)
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Effectively, equation 3.8 implies that if we have multiple observations, after updating we only
consider the parameter space which is still plausible after accounting for all the individual
pieces of evidence.

3.3 Reducibility of uncertainties and auto-correlation in time

For the engineering purposes at hand, we define uncertainties as reducible if it is feasible to
acquire, interpret and incorporate information that has a significant impact on the magnitude
of uncertainty. Such uncertainty is commonly called epistemic uncertainty (or knowledge un-
certainty). Typical examples of epistemic uncertainties related to the contemplated problems
are the probability distributions of soil strength properties or uncertainties in stratification, in-
cluding so-called anomalies or adverse geological details. These properties or features are
time-invariant, at least on an engineering time scale.

On the other hand, the uncertainty in an annual maximum river water level at a certain location
is practically irreducible. We commonly call this type of uncertainty aleatory uncertainty or
intrinsic variability. While it is true that each year we obtain new evidence, because each year
a new maximum level is realized, such information usually does not change the probability
distribution significantly, of course depending on the amount of data already in the data set
(i.e. statistical uncertainty).

In conclusion, reducibility can be considered as a matter of correlation in time. We can only
reduce uncertainties (i.e. learn) of random variables which we assume to be time-invariant
and, hence, epistemic. In other words, we assume them to be the same at the time of the
observation as for the future event to be estimated.

If however, a situation is dominated by aleatory variability (in time), we can hardly "learn" from
an observation. The effect of updating will be insignificant, as in this case the observation and
the predicted event are statistically independent in time (i.e., zero auto-correlation), practically
speaking.

For dike instability most soil properties and geohydrological parameters can be assumed time-
invariant with epistemic uncertainty, whereas most (external) loads such as the water level, the
phreatic level or traffic loads are typically classified as aleatory. For a detailed list of random
variables refer to section 6.4.

Model uncertainty typically has contributions of both reducible and of irreducible nature (Schweck-
endiek, 2014). Arguably, for physics-based performance functions in which we model most
random load conditions explicitly, the model error covers local bias, i.e. systematic over- or
under-predictions of the model in terms of performance at the location in question. Hence,
the model error can be assumed time-invariant and reducible.
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3.4 Implementation with sampling methods

The direct reliability updating method can be used with virtually any standard reliability method
(Straub and Papaioannou, 2014). For the sake of illustration, this section describes a straight-
forward implementation with Crude Monte Carlo simulation.

A pragmatic approach to deal with the issue of auto-correlation in time of the individual random
variables, i.e. if they are epistemic and fully redcucible in terms of uncertainty or aleatory
and irreducible, is to define two categories of random variables: epistemic and aleatory. In
reality, most random variables will represent contributions of both, epistemic and aleatory
uncertainty, yet often one of the two is clearly dominant. Furthermore, we use two sets of
random variables, Xp and Xf , where p stands for the (past) observed event and f for the
(future) event to be predicted. Both types of random variables (epistemic and aleatory) are
included in Xp and Xf , but are treated differently, as explained below.

The steps below describe a prior and subsequent posterior analysis using these definitions
with Crude Monte Carlo Simulation (MCS):

1 Simulation of the event to be predicted Generate n realizations of the basic random
variables according to their (prior) joint probability distribution. The j-th realization of the
i-th random variable is denoted as Xf

ij and the j-th realization of the vector of basic ran-

dom variables is denoted as Xf
j .

2 Prior probability of failure The prior probability of failure is the number of realizations in
which the performance function assumes a negative value (1[ · ] is the indicator function),
divided by n:

P̂ (F ) =
1

n

∑
j

1[g(Xf
j < 0)] (3.9)

3 Simulation of the observed conditions The realizations of all variables with (fully) re-
ducible uncertainty obtain the same value as the event to be predicted (full auto-correlation
in time or time-invariance):

Xp
ij = Xf

ij (3.10)

for all i where the uncertainty is assumed reducible. The random variables assumed to
be intrinsically variable obtain new independent realizations (no auto-correlation in time)
according to their (joint) probability distribution.

4 Posterior probability of failure The updating is achieved by conditioning on the obser-
vation (in general form εk = {hk(Xp) < 0},) and evaluating the following term:

P̂ (F |ε) =

∑
j

(
1[g(Xf

j < 0)] ·
∏

k 1[hk(Xp,k
j ) < 0]

)
∑

j

∏
k 1[hk(Xp,k

j ) < 0]
(3.11)

The term
∏

k 1[hk(Xp,k
j ) < 0] implies that an observation can imply several limit states

and/or several observations. Note that if observations were made at different points in time,
the independent realizations of the random variables Xp,k are required (i.e. the random
variables representing aleatory uncertainty).

The implementation with computationally more efficient reliability methods such as Impor-
tance Sampling, Directional Sampling or Subset Simulation is rather straightforward and es-
sentially requires solving equation 3.7, in which the numerator represents a combined limit
state of a parallel system.

14 of 70 Reliability updating for slope stability of dikes



4 Approximation using fragility curves

4.1 Problem description and objective

For application with computationally expensive performance functions, such as stability anal-
yses, the reliability updating approach may not be tractable with Crude Monte Carlo (or other
sampling-based techniques) in terms of computation times. For example;

• Suppose one evaluation of the performance function takes 1 second,
• and the performance function needs to be evaluated 1 million times,
• the total computation time amounts roughly 278 hours or almost to 12 days.

This is typically not feasible or acceptable in engineering projects. For high reliability require-
ments such as for Dutch flood defenses, the required number of computations can even be
orders of magnitude higher.

Below we describe an approximation method using fragility curves inspired by the experience
with probabilistic stability analyses in the Dutch VNK2-project, which requires significantly less
computation time. Furthermore, the proposed approach, in which the fragility curves can be
derived with several FORM analyses, can provide very insightful results which allow easier
interpretation of the results in terms of sanity checks by practitioners in our experience.

4.2 Fragility curves

Fragility curves are functions describing the conditional probability of failure given a (dominant)
load variable (see 3.1.3). For dikes, typically the (water-side) water level h is used as the load
of reference:

P (F |h) = P (g(X, h) < 0) (4.1)

in which case X becomes the vector of all random variables except for h. In other words,
for dikes a fragility curve quantifies the probability of failure of the dike, conditional on the
occurrence of a given water level, typically but not necessarily assuming a steady state pore
pressure response implying a long duration load condition (at least for slope stability analy-
ses).

Figure 4.1: Example fragility curve (see sec for details)
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While the following elaboration focuses on the water level h to be used in fragility curves, it is
important to realize that we can use any other load variable instead.

The definition of fragility curves implies that the curve at the same time represents the cu-
mulative distribution function (CDF) Fhc of the critical water level hc, which is the water
level at which the dike fails1. This can be illustrated by defining the performance function
as g = hc − h, for which case the probability of failure is given by:

P (F ) = P (hc < h) =

∫∫
hc<h

f(hc)f(h) dhc dh (4.2)

=

∫
Fhc(h)f(h) dh

=

∫
P (F |h)f(h) dh

The fact that fragility curves represent the probability distribution of the overall resistance
(quantified as the ’critical water level’) is the key concept used in the approximate approach
described in the remainder of this document. Before elaborating how reliability updating works
with fragility curves in section 4.4, section 4.3 explains how we can derive fragility curves and
how we can sample from them.

4.3 Beta-h curves and critical water level

In reliability analysis for slope stability of dikes it is common practice in the Netherlands to first
estimate the probability of failure conditional to several water levels in a relevant range using
the First-Order Reliability Method (FORM). The results are represented as beta-h curves as
depicted in Figure 4.2, which is just another representation of a fragility curve with the reliability
index β on the vertical axis instead of the probability of failure. The "fragility points" are the
result of the reliability analyses per water level. The red lines in Figure 4.2 indicate that we
assume that the conditional reliability for other water levels than in the fragility points can be
reasonably approximated by linear interpolation between the fragility points (in beta-h space).
Note that the fragility points can in principle be determined using any other reliability method,
not necessarily FORM.

As pointed out in section 4.2, such a beta-h curve represents the CDF of the overall resistance
term, in our applications typically the critical water level hc. Note that hc is a random variable
representing all random variables except h, some of which may be labeled load or load effect
variables and not resistance in the conventional sense. For practical implementation, we can
define the random variable hc in terms of the corresponding beta-h curve as follows.

Let the function G be defined as the linear interpolation (and extrapolation) of the conditional
reliability index based on the neighboring fragility points (β1,h1) and (β2, h2):

β = G(h) = β1 + (β2 − β1)
h− h1
h2 − h1

(4.3)

The critical water level, i.e. water level at which the dike will fail, can now be modeled as a
random variable in the following way:

hc = G−1(u) (4.4)
1Note that fragility curves do not always strictly meet the required properties for being a CDF. For exam-

ple, there are (rare) cases where increasing the load does not lead to a probability of failure of one (i.e.
limx→+∞ F (hc) < 1.). We assume here that these formal issues do not matter for the envisaged practical
civil engineering applications.
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Figure 4.2: Beta-h curve: The fragility points represent the reliability indices correspond-
ing to the conditional probabilities of failure derived for discrete water levels.
The conditional reliability for other water levels is obtained by linear interpola-
tion.

where u is the realization of a standard normal random variable and G−1 is the inverse inter-
polation of the beta-h curve (i.e. interpolate hc from given u or β). The definition in standard
normal space is particularly useful, as many implementations of reliability analysis work from
standard normal space before transforming to real space.

Realizations of hc can be generated by transforming a standard normal distributed sample
using the inverse (interpolated) beta-h curve2: hc,i = G−1(ui) (see Figure 4.3).

Figure 4.3: Illustration of sampling realizations of the critical water level directly from (lin-
early) interpolated beta-h curves

In the Dutch experience with slope reliability analysis for dikes, linear interpolation in beta
space (with sufficient and sensibly located fragility points) is a very reasonable approximation
of the exact distribution (see examples in chapter 7), which is the main reason to work with
beta-h curves instead of interpolating in probability space.

In summary, beta-h curves can be generated using reliability analyses for discrete water lev-
els, for example with FORM, and allow sampling of the critical water level directly without
requiring additional computationally expensive model simulations.

2Note that this definition is similar to the relation often exploited for sampling non-uniform random variables:
Transforming realizations of a random variable with its CDF leads to a uniformly distributed sample. Inversely,
transforming uniformly distributed realizations wi with an inverse CDF F−1

X leads to a sample with the distribution
of X : xi = F−1

X (wi).
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4.4 Reliability updating with fragility curves

Being able to define the random variable of the critical water level based on beta-h curves as
discussed in section 4.3, we can apply the reliability updating approach discussed in section
3.2 directly. To that end we again define the performance function g = hc − h, where hc is
the critical water level and h is the water level, both for the (future) conditions to be assessed,
implying that failure is defined as the water level exceeding the critical water level:

F = {g < 0} = {hc < h} (4.5)

Furthermore, we define the observation or evidence (ε) as the critical water level at the obser-
vation hc,obs exceeding the water level at the observation hobs (can also be a random variable
due to measurement uncertainty etc.):

ε = {hc,obs > hobs} (4.6)

Note that the conditions at the time of the observation may differ from the assessment con-
ditions, in which case it is necessary to derive a separate beta-h curve for the observation.
There are many potential reasons for such differences such as subsidence, degradation or
human interventions.

Having defined failure under assessment conditions (F ) and the evidence in terms of survival
of the observed conditions (ε), the basic formulation of reliability updating with fragility curves
directly follows from Equation 3.5:

P (F |ε) =
P (F ∩ ε)
P (ε)

=
P ({hc < h} ∩ {hc,obs > hobs})

P ({hc,obs > hobs})
(4.7)

As Straub and Papaioannou (2014) have illustrated, Equation 4.7 can be solved by standard
reliability methods. The numerator represents a parallel system reliability problem of two limit
states, whereas the denominator is a classical component reliability problem.

Note that reliability updating will only have an effect if the resistance of the dike in the fu-
ture (hc) is correlated with the resistance at the time of the observation (hc,obs), as will be
discussed in the subsequent section 4.5.

4.5 Correlation between assessment and observation

As discussed in section 3.3, we can only reduce the epistemic (knowledge) uncertainty, while
aleatory uncertainty will persist. The proposed pragmatic approach is to divide the random
variables in two categories in terms of the uncertainty they represent:

1 epistemic, reducible uncertainty (i.e. time invariant)
2 aleatory, irreducible uncertainty (i.e. intrinsically variable)

In reality, most random variables will represent contributions of both epistemic and aleatory
uncertainty, yet mostly one of the two is clearly dominant.

We can use the information of auto-correlation in time of the individual basic random variables
to estimate the correlation between the dike resistance in the assessment conditions (hc)
and at the time of the observation (hc,obs) using the influence coefficients (α) from deriving
the fragility curves. According to Vrouwenvelder (2006), the (linear) correlation coefficient ρ
between the two resistance terms can be approximated by :

ρ ≈
∑
i

αp
iα

f
i ρ

p,f
i (4.8)
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where αp
i and αf

i are the FORM influence coefficients (also attainable from other reliability
methods) of variable i for the observation (p for past) and for the assessment conditions (f
for future), respectively. The correlation coefficient ρp,fi describes the correlation of variable i
between the observation and the assessment, thus effectively the auto-correlation in time for
individual variables. As discussed, we would assume either time-invariance (ρp,fi = 1) or no
correlation at all (ρp,fi = 0) for each basic random variable. But of course, better estimates
can be used if available.

In the approach with fragility curves, the influence coefficients αi are obtained in the fragility
points. The αi can differ between the fragility points. There are essentially two practical
approaches to deal with this issue in estimating the correlation coefficient:

1 by averaging over all fragility points on which the fragility curve is based, or
2 by interpolation of theαi in the design point of the fragility curve, similar to the interpolation

of the conditional reliability index β.

Both options can be used with most standard implementations of reliability methods. Averag-
ing (option 1) works fine for near-linear fragility curves, yet has disadvantages for strongly non-
linear of the fragility, in which case typically also the influence coefficients change significantly.
An example of such behavior be a sudden drop of the fragility curve a higher water levels due
to infiltration of overtopping water and subsequent saturation of the inner slope. When such
phenomena play a dominant role, the critical sliding surface change with the water level and
so do the influence coefficients. In such conditions interpolation in the design point (option
2) determines ρ in the most relevant area or point of the resistance distribution and provides
more accurate results than averaging. Note that for all options it is required to normalize
the influence coefficients after averaging or interpolation (i.e. α2

i,normalized = α2
i /
∑
α2
i ).

Interpolating the squared influence coefficients (respecting the sign) removes the need for
normalization.

In section 7.4 we illustrate the sensitivity of the posterior reliability to the correlation between
assessment and observation using option 2 (interpolation in the design point). Some tests (not
reported here) have given us confidence that option 2 is sufficiently accurate in comparison
with a full Monte Carlo analysis. Nevertheless, it is recommended to keep on benchmarking
the results of approximations with alternative reliability methods which do not require these
approximations.

4.6 Implementation with Monte Carlo simulation

In this section we illustrate the implementation of reliability updating with fragility curves as
described in section 4.4 using Crude Monte Carlo simulation (MCS) for the special case of
full correlation between the resistance in assessment and observation conditions, as well as
for partial correlation (i.e. the general case).

Suppose we have derived fragility curves for the assessment conditions as well as for the
conditions at the time of the observed survival, allowing us to produce samples of the cor-
responding critical water levels with realizations hc,i and hc,obs,i respectively. The posterior
probability of failure can now be estimated as described in section 3.4:

P̂ (F |ε) =

∑
i (1[hc,i < hi] ·1[hc,obs,i > hobs,i])∑

i 1[hc,obs,i > hobs,i]
(4.9)

In other words, we essentially count the realizations for which both failure and the observation
are true and divide by the number of realizations which comply with the observation. Incorpo-
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rating the observation in this fashion works as a filter in the Monte Carlo simulation removing
implausible realizations (i.e. which do not match the observation).

For the special case that the critical water levels hc and hc,obs are fully correlated (i.e. ρ = 1;
see section 4.5), the sampling scheme as described in section 4.3 can be adopted by using
the same realization of the standard normal variable u to interpolate both realizations from
the fragility curves for hc and hc,obs (see Figure 4.4).

Figure 4.4: Illustration of sampling realizations of the critical water level directly from (lin-
early) interpolated beta-h curves for both, the assessment and the observa-
tion in case of full auto-correlation in time (special case)

For the general case, where the correlation between assessment and observation resistance
is smaller than 1, we can generate correlated realizations of standard normal variables u and
uobs with correlation ρ (e.g. by using the inverse of the bi-variate normal distribution function
with correlation ρ) as depicted in Figure 4.5.

Figure 4.5: Illustration of sampling realizations of the critical water level from (linearly)
interpolated beta-h curves for both, the assessment and the observation in
case of partial auto-correlation in time (general case)

Practical aspects for generating fragility curves for the assessment and observation conditions
distinctly for a slope instability problem will be discussed in chapter 6.
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5 Handling discrete scenarios

This chapter contains a description of how to handle discrete scenarios in the reliability up-
dating method described hitherto. Special attention is paid to the auto-correlation in time of
scenarios.

5.1 Why discrete scenarios?

The need for defining discrete scenarios typically arises from the inability to capture some
uncertainties in the continuous stochastic input variables of the model. The two most relevant
types of scenarios in a dike stability context are:

1 Stratification: Due to limited site investigation the precise composition of subsoil layers
in a given dike section may be uncertain. Such uncertainty can relate to the presence of
specific soil strata (see Figure 5.1) or local features such as clay lenses.

2 Geohydrological response: In the common tools used for slope stability analysis in
the Netherlands, the geohydrological response in the dike cannot entirely be modeled
stochastically, practically speaking (Kanning and Van der Krogt, 2016). This is especially
true for the phreatic surface.

(a) Interpretation 1 (b) Interpretation 2 .

Figure 5.1: Illustration of different stratification scenarios inferred from the same borings,
adopted from Schweckendiek (2014).

When defining discrete scenarios is unavoidable, the reliability (updating) analyses can be
carried out conditional on the scenarios (i.e, for each scenario individually).

5.2 Prior analysis with scenarios

As discussed in section 5.1, some ground-related as well as geo-hydrological uncertainties
will be modeled as (discrete) subsoil scenarios Ei. The total probability of failure over all
(mutually exclusive and collectively exhaustive:

∑
P (Ei) = 1) scenarios is given by the law

of total probability:

P (F ) =
∑
i

P (F |Ei)P (Ei) (5.1)

Similarly, the combined fragility curve over all scenarios can be determined by P (F |h) =∑
i P (F |h,Ei)P (Ei). In contrast to prior analysis, the distinction between time-invariant

(epistemic) conditions represented by scenarios and conditions that are intrinsically variable
in time (aleatory) will matter in the posterior analysis as discussed in the section below.
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5.3 Posterior analysis with scenarios

Section 3.2 described reliability updating for continuous probability distributions, which are
the most common representations for uncertainty in physical quantities involved in failure and
observation (limit state) functions. This section describes the posterior analysis for situations
with discrete scenarios or discrete probability mass functions (PMF), which can be also com-
bined with the fragility curves approach as described in chapter 4.

5.3.1 Probabilities of observation and assessment scenarios

The general idea behind defining scenarios is that we have a set of conditions the dike strength
depends on, and that some of these conditions are time-invariant and others are variable in
time. For example, the dike strength depends on the stratification of the subsoil under the dike
(see Figure 5.1), which is often uncertain. The subsoil composition typically does not change
between observation and assessment (i.e. is time-invariant) and, hence the uncertainty is
of epistemic nature. On the other hand, we may define discrete scenarios of the phreatic
surface’s response to external forcings, for example due to practical problems with modeling
the response with continuous probability distributions. The phreatic surface response typically
depends on more factors than just the dike composition such as rainfall before and during the
high water event. Hence, the uncertainty represented is of aleatory nature.

In order to use a similar probabilistic framework for discrete scenarios as for continuous ran-
dom variables, we will use the following definitions:

• Ei is the event that scenario i is true in the assessment conditions with associated prob-
ability P (Ei),

• Eobs,j is the event that scenario j is or was true in the observation conditions with associ-
ated probability P (Eobs,j),

• P (Ei|Eobs,j) is the conditional probability that scenario i is true in the assessment con-
ditions, given scenario j is or was true in the observation conditions.

Note that for the time-invariant or epistemic type of scenarios

• P (Ei|Eobs,j) = 1 for i = j and
• P (Ei|Eobs,j) = 0 for i 6= j,

as the conditions do not change between assessment and observation. If a scenario was true
in the past it will be true in the future, and no other scenario can be true. Likewise, for aleatory
type of scenarios holds P (Ei|Eobs,j) = P (Ei), as the observation conditions do not give
information regarding the assessment conditions.

Essentially all possible combinations of assessment and observations scenarios with asso-
ciated probabilities need to be considered for the overall updated probability of failure, as
elaborated in section 5.3.2 below. A requirement by the total probability theorem is that the
whole set needs to be mutually exclusive and exhaustive (i.e.

∑
P (Ei ∩ Eobs,j) = 1).
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5.3.2 Updating failure probabilities with discrete scenarios

As we have seen in section 3.2, the general formulation for reliability updating with inequality
information can be written as P (F |ε) = P (F ∩ ε)/P (ε). In order to relate the probabilities
defined in section 5.3.1, we define the following short-hand notation:

• P (Fi) = P ({g(X|Ei) < 0}) is the probability of failure in the assessment conditions
given scenario i is true,

• P (εj) = P ({h(X|Eobs,j) < 0}) is the probability of the observation being true given
scenario j is or was true,

• P (Fi∩εj) = P ({F ∩ε}|Ei, Eobs,j) is the probability that both failure in the assessment
conditions and the observation are true, given scenario i is true for the assessment and
scenario j is true for the observation.

The updated or posterior probability of failure for a given combination of assessment and
observation scenario is then given by:

P (Fi|εj) =
P (Fi ∩ εj)
P (εj)

=
P ({F ∩ ε}|Ei, Eobs,j)

P (ε|Eobs,j)
= P (F |ε, Ei, Eobs,j) (5.2)

This implies that an observed survival during an event with an observed scenario j, gives
information about the future failure probability in case scenario i occurs. The posterior prob-
ability of failure can then be obtained from the weighted sum of the individual conditional
posterior probabilities:

P (F |ε) =
∑
i

∑
j

P (Fi|εj)P (Ei ∩ Eobs,j) (5.3)

where the summation goes over all possible combinations of i and j and with

P (Ei ∩ Eobs,j) = P (Ei|Eobs,j)P (Eobs,j) (5.4)

Note that some of these combinations will be irrelevant and do not need to be analyses be-
cause their probability can be zero, as explained in section 5.3.1.

5.3.3 Implementation options

The two general options to deal with discrete scenarios computationally are:

1 Two-stage procedure: In the two-stage procedure we first evaluate all possible (and rel-
evant) combinations of observation and assessment scenarios individually to obtain the
conditional posterior probabilities of failure P (Fi|εj) (Eq. 5.2) before combining the re-
sults with the corresponding scenario probabilities to the overall posterior probability of
failure P (F |ε) (Eq. 5.4).

2 Integrated Monte Carlo simulation: In an integrated Monte Carlo simulation, first we
sample realizations of the discrete scenarios and, subsequently, we sample the realiza-
tions of the other (continuous) random variables conditional on the scenarios. This holds
for both the assessment and the observation. Appendix B describes an algorithm for a
sampling strategy which also takes of the auto-correlation of discrete scenarios in time
into account.

Both approaches are equivalent and lead to the same result (within the error margins of the
sampling methods). The two-stage approach has the advantage that it immediately provides
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information on the individual updated probabilities of failure (and fragility curves) per discrete
scenario, which allows a richer interpretation of the results. Hence, throughout the remainder
of this report the two-stage implementation is used. The example in appendix section B.2
illustrates the application and equivalence of both procedures.
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6 Application to dike instability and survival information

This chapter addresses several important aspects when applying the reliability updating method
described hitherto to slope stability of dikes. Also the TRAS (ENW, 2009) contains valuable
and relevant guidance, whicn is not all repeated here, but should certainly be incorporated in
future guidance on the topic. Special attention is paid to modeling choices for the assessment
and the observation conditions as well as to the limitations of the approximation with fragility
curves.

Reliability updating with survival information of observed loads can be carried out with a mul-
titude of reliability methods directly using a stability model, or by approximating the overall
resistance in terms of the critical water level through fragility curves or, as explained in chap-
ter 4. Though the focus in this chapter is on the approach with fragility curves, as we regard it
the most practicable approach for the time being, most considerations equally hold for appli-
cation of other reliability methods.

6.1 Typically relevant observed loading conditions

The main loading conditions for dikes are (see also Figure 6.1):

1 high (outside) water levels
2 precipitation
3 other external loads (e.g. traffic)

Observation of any significant individual load or load combination can be used for reliability
updating. The list above is not exhaustive, any other significant survived condition can be
used, as long as the observation can be captured in quantitative terms.

Figure 6.1: Illustration of the main relevant loads on dikes, observations of which can be
used in a reliability updating context
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6.2 How to generate fragility curves

The theory discussed hitherto regarding the approximation with fragility curves requires con-
ditional reliability analyses for given values of the considered load parameter in order to de-
termine the fragility points. The conventional approach in the Netherlands for slope stability is
to condition the geo-hydrological response (i.e. pore water pressures) on a given water level.
Then, the steps for constructing a fragility curve of beta-h curve are:

1 select a water level
2 condition the geohydrological response on this water level
3 carry out a stability analysis with mean or design values (optional)
4 find the critical sliding plane
5 carry out a FORM analysis for the critical sliding plane
6 repeat steps 1-5 for other water levels

The following remarks should be made regarding the points above:

ad 1) Typically appropriate water levels to choose are between the daily water level and the de-
sign water level (and beyond), essentially any water level that can significantly contribute
to the probability of failure (combination of conditional failure probability and probability
of the load).

ad 2) In most projects hitherto, such as in the VNK2 risk analyses, the geohydrological re-
sponse was a deterministic cautious estimate. Recently, Kanning and Van der Krogt
(2016) described how also parameters of the geohydroglogical response can be mod-
eled as random variables, such as the leakage length and the intrusion length.

ad 3 and 4) In FORM analyses, in principle, we can search for the critical sliding plane in each
deterministic slope stability analysis within the FORM iterations. Yet, often the sliding
planes do not vary much for a given water level, as the water level and the resulting
changes in pore pressures are the main driver for changes in the position of the sliding
plane. Therefore, it can be efficient to fix the sliding plane based on a deterministic
analysis using either mean or design values. Design values (e.g. characteristic values
based on 5%-quantiles of ground properties, sometimes divived by a partial factor) are
often the better choice as they are typically closer to the design point values that result
from the FORM calculation. Of course, this simplification needs to be treated with care
and it is highly recommended to verify if the sliding plane is indeed the critical one for
the FORM design point values.

ad 5) The FORM analyses includes all (continuous) stochastic variables except the water level.
ad 6) The choice of additional water levels can be based on the criteria described under ad

1). Also refinement of the grid of fragility points should be sensible for highly non-linear
beta-h curves.

It is important to note that, though the water level is typically the dominant load variable,
fragility curves can also be generated for other load variables such as the traffic load, if re-
quired and sensible.

A major advantage of working with FORM to generate the fragility points is that we can also
estimate the correlation between the resistance terms (see Equation 4.8) and assess whether
the assumption of full correlation is justified.

For details on dike slope reliability analysis in realistic conditions refer to the accompanying
case study report (Schweckendiek et al., 2016).
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6.3 Considerations for modeling the observation

Ideally, we model the assessment and observation conditions by expressing our expectations
and uncertainties in terms of (continuous and discrete) probability distributions for the relevant
random variables. In practical applications however, that is not always feasible, in which case
we tend to make conservative assumptions. In this section we will address a number of items
in this respect which have to be treated with care in order not to obtain over-optimistic or
over-conservative reliability estimates.

6.3.1 Conservative versus optimistic assumptions

Conservative modeling assumptions for the assessment conditions are not conservative for
the observed conditions. What do we actually mean by conservative? In a probabilistic context
we try to avoid conservatism where we can by modeling uncertainties explicitly. Where that
is not possible, conservative assumptions lead to rather high probabilities of failure, meaning
that more detailed modeling would lead to a lower estimate for the probability of failure.

For example, since it is hard to model the uncertainty in the response of the phreatic surface
to rising water levels, we commonly make a conservative model of the pore water pressure
response. For the assessment conditions, modeling the maximum conceivable pore pressure
response leads to an upper bound of the estimate of the probability of failure.

Now we have to realize what the implications are for modeling the observation conditions in a
reliability updating context. In order not to over-estimate the effect of reliability updating, we
need to make the opposite assumptions for loads, load effects and resistances compared to
the prior analysis. In terms of the same example with the pore pressure response, assuming
rather high pore pressures in the observation implies a rather high observed load effect, which
leads to a lower bound of the updated probability of failure. This is not conservative in the
given definition. In other words, in order to obtain a cautious estimate of the effect of reliability
updating with survival information, we need to make "optimistic" modeling assumptions for the
observation as summarized in Table 6.1.

"Conservative" estimate
Assessment Observation

loads high low
load effects high low
resistances low high

Table 6.1: Conservative assumptions or estimates for the main categories loads, load
effects and resistances, distinguishing between assessment and observation
conditions in a reliability updating context.

Where conservative assumptions are unavoidable, this aspect needs to be carefully exam-
ined, per relevant aspect or parameter.
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6.3.2 Typically neglected resistance contributions

A subcategory of conservative modeling assumptions discussed in the previous section are
contributions to the resistance of the dike which we commonly neglect in assessments and
design. The reasons for not taking these features into account in current practice are typically
(a) that the effect itself is negligible or (b) that the effect leads to a reduction in failure probabil-
ity but is difficult to quantify, so neglecting them is still being on the safe side in assessments
and designs. The list below contains several examples which may be relevant in reliability
assessments of dike slope stability:

• Unsaturated strength: It is common practice in assessments and designs to use shear
strength based on drained behavior (e.g. Mohr-Coulomb) in the partially saturated or
unsaturated zone above the phreatic surface. Yet it is known that the suction in the zone
above the phreatic surface due to capillary forces can lead to a higher shear strength (see
illustration in Figure 6.2).

• Three-dimensional failure planes: The two-dimensional limit equilibrium models com-
monly used in assessments and designs assume a plane-strain condition, i.e. a sliding
surface of infinite length in the longitudinal direction of the dike. In reality, sliding planes in
dikes are of finite length, typically 50 to 200 m long. That implies that the resistance of the
three-dimensional failure surface will provide more shear resistance than the plane-strain
model suggests. For rather homogenenous dikes sections this effect is accounted for with
the model uncertainty md (the assumed performance function is g = SF ·md − 1, see
Duinen (2015) for background information). In case of variable geometries, e.g. in dike
sections with buildings or other objects, there may be an effect of the shape of the failure
plane beyond what is considered in the model uncertainty.

• Trees or other objects on the dike: Objects on the dike or even penetrating it can affect
the stability, both positively as well as negatively.

Figure 6.2: Illustration of unsaturated or partially saturated zone in a dike above the
phreatic surface and the part of the sliding plane with potentially "additional
strength" compared to conventional safety assessment slope analyses where
the effects of unsaturated strength are typically neglected.

Note that the list above is by no means exhaustive and merely an illustration of the types of
resistance contributions that may need to be considered depending on the local conditions.

A pragmatic approach to such resistance contributions is to start with a sensitivity analysis in
order to scrutinize whether the effect can be discarded as negligible or needs to be addressed
explicitly. Phenomena with significant effect will need to be addressed in some way, even
though the effect is favorable for stability, in contrast to assessment and design.
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6.4 Epistemic versus aleatory uncertainty

There are various variables that affect the reliability of a dike for slope stability of the inner
slope. For reliability updating, it is important to know whether a variable is considered as time-
invariant or as a random process representing aleatoric variability. The uncertainty in time-
invariant properties is necessarily epistemic (i.e. knowledge uncertainty) and can, hence, be
reduced. The list below provides an overview of the most relevant categories of variables,
including arguments why these properties typically below to either category - predominantly
epistemic or aleatoric uncertainty:

• Soil properties: Soil properties describing inherent properties of the material such as
volumetric weight, friction angle or cohesion are typically time-invariant (in engineering
terms). State variables, on the other hand such as the overconsolidation ratio (OCR) may
be subject to changes in time (e.g. due to ageing). The assumption of time-invariance
needs to be taken for each individual case considering the contemplated time scale. Note
that changes in time do not necessarily imply that a variable enters the aleatory category,
as changes in time can also be modeled explicitly as processes with epistemic uncertainty
(e.g. degradation).

• Geo-hydrological response: The geo-hydrological response of a dike (changes in pore
water pressures) to outside water levels can be based on parametric response model
using e.g. leakage lengths and intrusion lengths to model the increase in pore water
pressure as a function of outside water level (Kanning and Van der Krogt, 2016). Even
though the pore water pressure varies in time, the parametric response properties can
be assumed as time-invariant. An exception may be the phreatic surface, which does not
only respond to the external water level but also to precipitation events, which themselves
are of aleatory nature.

• External loads: External loads such as traffic loads may be different and uncorrelated
between assessment and observation; these are therefore typically assumed as aleatory.

• Model uncertainty: Model uncertainty contains epistemic and aleatory components, as
discussed in Schweckendiek (2014) in more detail. It is always safe to assume model
uncertainty to be aleatory in a reliability updating context, Yet, arguably, in case of slope
stability analysis, model uncertainty will be dominated by local bias which is time-invariant
and reducible. Hence, if model uncertainty is not dominant, we may choose to assume it
to be epistemic; if it is dominant, we should assess thoroughly, if the epistemic assumption
does not lead to a severe over-estimation of the effect of reliability updating.

• Stratification: The presence of soil strata or geological anomalies are classic examples
of epistemic uncertainty. They do not change, appear or disappear on an engineering
time scale. We are just uncertain about their presence and sometimes size based on the
limited site investigation data at hand.

In general we can state that the larger the share of epistemic uncertainty with respect to
the total uncertainty, the greater the potential impact of reliability updating. Naturally the list
of categories/variables above is not exhaustive and the choice to model a variable as time-
invariant or not can vary from case to case.

For concrete examples of the choices for realistic slope stability problems refer to the accom-
panying case study report (Schweckendiek et al., 2016).
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6.5 Sliding surfaces to be considered

6.5.1 General method

The general reliability updating method based on Bayes’ rule as described in chapter 3 virtu-
ally does not have limitations in terms of applicability except for practical reasons like modeling
and computational efforts. When used with sampling methods like Monte Carlo simulation,
we may consider the critical sliding surface (i.e. lowest factor of safety) for each realization to
evaluate the (non)exceedance of the stability limit state.

The approximation with fragility curves as explained in chapter 4 is based on simplifications
introducing additional requirements in terms of the sliding surfaces considered, which we
address in the following sections. If these specific requirements cannot be met, we may have
to resort to other reliability methods like Monte Carlo simulation directly with the stability model
instead of approximating with fragility curves.

6.5.2 Critical sliding surfaces

Common practice is to first identify the a-priori critical sliding surface(s) and base the reliability
(updating) analysis on that very surface (or several ones). It is important to note that the
notion of a critical sliding surface is slightly different than in a deterministic setting. In a
reliability analysis the probability of slope instability is ideally considered as the probability of
all potential sliding planes combined (i.e. P (slope failure) = P (∪ni=1sliding plane i)),
taking into account the mutual correlations. Practical limitations like computation times often
impede following this rigorous approach.

In this context, the implicit assumption of considering the critical sliding plane, being the
one with the highest probability of failure among the potential ones, is that the combined
probability of failure will be approximately equal to the one determined for the critical slid-
ing plane. This assumption is often justifiable as typically all other potential sliding planes
are highly correlated with the critical one (for perfect correlation: P (slope failure) =
maxn

i=1 P (sliding plane i)).

6.5.3 Sliding surface in observation

In the approach with fragility curves, an overall resistance variable is used for both the as-
sessment and the observation conditions. In other words, we aggregate all information of
the individual random variables in one resistance variable, typically the critical water level. It
is assumed that these resistances represented by the fragility curves are correlated, which
implies that they need to be comparable in the sense that we address the same resistance.
In practical terms for slope stability, this boils down to the requirement that the failure surface
(slip plane) needs to be essentially the same for observation and assessment.

For practical application, that means that we define the critical sliding surface for the as-
sessment conditions and then consider the same sliding surface in the observed, survived
conditions. The critical sliding surfaces in the assessment and the observation conditions can
be different. The important notion here is that in reliability updating with fragility curves, we
contemplate an overall resistance term which is represented by a specific sliding surface or
failure mode. And that needs to be the same in assessment and observation.
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6.5.4 Several potentially critical sliding planes

Sometimes, a critical sliding surface cannot be identified a-priori. For example, if uplift condi-
tions are critical, the location of the critical sliding plane may differ substantially between low
and high water levels (Figure 6.3).

Figure 6.3: Illustration of how the occurrence of uplift can change the location of the criti-
cal sliding plane.

Also realize that in a reliability updating context, the critical sliding plane a-posteriori can be
different from the a-priori one, because several sliding planes my experience more or less
impact from incorporating the survival information. In cases where the (prior or posterior)
critical sliding plane cannot be determined a-priori with confidence, it is highly recommendable
to contemplate all potential critical sliding planes separately in both the prior and the reliability
updating analysis.

6.5.5 Changes to the cross cross section

The approximation with fragility curves can in principle also be used in a reinforcement de-
sign setting, as long as the failure mechanism in question is not altered by the reinforcement
measures in terms of the failure mechanism (e.g. rotation of principal stresses). For example,
a change in the outer slope angle or the replacement of the revetment will typically not affect
the inner slope stability, in which case the reliability of the inner slope can still be updated with
the approximation using fragility curves.
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7 Examples and benchmark tests

This chapter contains examples to illustrate the application of the reliability updating method
as explained hitherto. The examples also serve as benchmarks for comparing the approxima-
tion using fragility curves with exact solutions (e.g. MCS directly with model simulations).

7.1 Example 1: Critical water level versus water level

The first benchmark example concerns a simple linear performance function with two nor-
mal distributed random variables. The purpose of this example is a step-wise illustration of
the approach for a problem with known exact results. For implementation details and more
information refer to appendix C.

7.1.1 Input data and prior reliability

The performance function is

g = hc − h (7.1)

with hc being the critical water level (i.e. the water level at which the dike fails) and h the water
level. The probability distributions of both are defined in Table 7.1 and illustrated in Figure 7.1,
along with the observed water level which we assume to have survived and the estimated
critical water level at the time of the observation.

Symbol Unit Description Distribution Mean Standard deviation

hc [m]+REF critical water level Normal 6
√

2

h [m]+REF water level Normal 2
√

2
hobs [m]+REF observed water level Deterministic 5 N/A
hc,obs [m]+REF critical water level Normal 7

√
2

at observation

Table 7.1: Example 1: Probability distributions of variables

Figure 7.1: Example 1: Probability distributions of the (critical) water levels for assess-
ment and observation

Note that the expected critical water level at the time of the observation is estimated to have
been higher than for the assessment. Qualitatively speaking, this is a typical situation we
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encounter in practical applications due to degradation processes (e.g. settlements) or differ-
ences in the presence of traffic loads etc.

For such linear performance functions with normal-distributed random variables, the exact
prior reliability index can be obtained analytically by

β =
E[g]

σg
=

µhc − µh√
σ2
hc

+ σ2
h

=
6− 2√
2 + 2

= 2 (7.2)

7.1.2 Prior analysis with fragility curves

Figure 7.2 depicts the fragility curve for the contemplated problem, whereas Figure 7.3 shows
the corresponding beta-h curve (linear interpolation between the known fragility points).

Figure 7.2: Example 1: Fragility curve

Figure 7.3: Example 1: Beta-h curve (linear interpolation between pre-determined
fragility points)

Note that the linear interpolation between the fragility points in the beta-h curve (Figure 7.3)
does not introduce an approximation error in this specific case, as the beta-h curve for a
Normal-distributed resistance variable is actually a straight line.

Monte Carlo simulation based on the beta-h curve as described in section 4.6 confirms the
prior reliability index of 2, which shows that the approach produces exact results for linear
beta-h curves. For details refer to appendix C.
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7.1.3 Posterior analysis exact and with fragility curves

In order to incorporate the information of the observed survived water level of hobs = 5
m above reference level, we follow the sampling approach as described in section 4.4 with
the beta-h curves as depicted in Figure 7.4. Note that the horizontal shift between the two
lines reflects the estimated (mean) difference in resistance between the conditions for the
assessment and for the observation.

Figure 7.4: Example 1: Beta-h curves for the assessment and observation conditions
(linear interpolation between pre-determined fragility points)

Reliability index Probability of failure

Prior 2.00 2.3 · 10−2

Posterior 2.35 9.4 · 10−3

Table 7.2: Example 1: Prior and posterior reliability estimates

Table 7.2 shows that the updated probability of failure is roughly a factor 2.5 lower than the
prior value. Figure 7.5 shows that the posterior resistance distributions are truncated at a
value somewhat lower than the observed load. The reason is that the assessment conditions
exhibit a somewhat lower resistance compared to the observed conditions. In this specific
case with two exactly parallel beta-h curves, the shift in truncation value is precisely the hor-
izontal distance between the assessment and the observation curve, which in turn is the
difference in mean critical water level (resistance).

Figure 7.5: Example 1: Histograms of the prior and posterior realizations of the critical
water level comparing direct MCS and sampling from fragility curves
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7.1.4 When to expect more or less effect based on the fragility curves?

This section provides considerations on when to expect more or less effect by reliability up-
dating based on characteristics of the fragility curves for assessment and observation. For
the sake of illustration we assume the fragility curves parallel to each other and separated by
∆ (in horizontal direction).

Figure 7.6: Example 1: Difference between hc and hc,obs in fragility curve

Note that this implies that the critical water level in the observation is estimated to be exactly
∆ higher than in the assessment conditions (i.e. ∆ = hc− hc,obs) also illustrated in the PDF
of hc of Example 1 in Figure 7.7. Figure 7.7 also illustrates that the probability distribution
of hc is effectively truncated at hobs −∆, removing area A from the PDF. Unsurprisingly, for
∆ = 0 the probability of the critical water level below the observed water level becomes zero.

Figure 7.7: Example 1:Truncation of the PDF of the critical water level (f(hc) at the value
hobs −∆ for two linear and parallel fragility curves).

Consequently, we expect a relatively large effect of reliability updating for rather flat fragility
curves (i.e. large uncertainty in the resistance) with a relatively high observed load and little
distance between the assessment and observation curve. Especially for rather flat curves,
relatively small differences between assessment and observation can lead to a high ∆ (hori-
zontal distance) and, hence, a rather low effect on the probability of failure.
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7.2 Example 2: Internal erosion with Bligh’s rule

While the previous example has illustrated the effect of probability updating based on survival
information for a single resistance variable (hc), this second example shows that the same
principles are valid with a multidimensional problem (i.e. various resistance variables) and
a non-normal distributed overall resistance term. The theory is applied to Bligh’s rule (i.e.
internal erosion) as it is described in Schweckendiek (2014). For details refer to appendix C.

7.2.1 Input data and prior reliability

The performance function based on Bligh’s rule reads:

g = mB
L

c
− h (7.3)

wheremB is the model uncertainty factor as defined in Kanning (2012), based on a Bayesian
Analysis of dike failures and survivals, L [m] is the length of the seepage length, c is the
percolation factor which depends on the grain size of the erodible material in the aquifer and
in this case h [m] is the head difference over the structure (see Figure 7.8).

Figure 7.8: Definitions for Bligh’s rule model (Schweckendiek, 2014)

The example parameters are defined in Table 7.3, both for the assessment as well as for the
observation (survival) conditions. The parameter ∆L reflects the estimated mean difference
between the length of the seepage path, implying that we assume the seepage length (mean
value) to have been larger at the time of the observation than for the assessment (see also
Figure 7.9), for example because the structure was amended due to a change in usage.

Symbol Unit Description Distribution Parameters

mB [-] model uncertainty factor Lognormal µ = 1.76, σ = 1.69
L [m] seepage length Normal µ = 50, σ = 2.5
c [-] percolation factor Deterministic c = 18
h [m] head difference Gumbel α = 0.53, β = 0.406
hobs [m] observed head difference Deterministic 2.4

∆L [m]
difference between

Deterministic 10.0
observation and assessment

Table 7.3: Example 2: Probability distributions and parameters
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Figure 7.9: Example 2: Probability distributions of mB and L parameters for assessment
and observation

Note that the critical head difference in this case is given by hc = mB
L
c

. The resulting
distribution of the overall resistance term is depicted in Figure 7.10 (black line) along with the
probability distribution of the head difference (green line) and the observed water level (blue
dashed line).

Figure 7.10: Example 2: Probability distributions of the (critical) head difference for as-
sessment and observation

The prior reliability estimated using Monte Carlo simulation (MCS) is 1.65, with a correspond-
ing probability of failure of 4.8 · 10−2.
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7.2.2 Prior analysis with fragility curves

Knowing the exact result for the prior reliability we now investigate the performance of the
approximation with fragility curves on the prior results. As depicted in Figure 7.11 the beta-h
curve is clearly non-linear, implying a non-normal distributed overall resistance term (i.e. hc).
Hence, the discretization of the curve matters for the interpolation between the fragility points.

Figure 7.11: Example 2: Beta-h curves for the assessment conditions with 3 (red line)
and 6 (blue line) fragility points respectively

Table 7.4 shows the reliability estimates for both the exact method and the approximation
method with fragility curves for difference discretizations (i.e. number of fragility points). The
approximation method produces results close to the exact method for an appropriate level of
discretization, in this case 6 fragility points. The approximation with only 3 fragility points leads
to an overestimation of the reliability index due to the high non-linearity of the beta-h curves
in the region with significant probability density of the head difference (load).

MCS FC

3 points
PriorP (F ) 4.8 · 10−2 1.3 · 10−2

β 1.65 2.23

6 points
PriorP (F ) 4.8 · 10−2 4.2 · 10−2

β 1.65 1.73

Table 7.4: Example 2: Prior probability of failure and reliability index comparing the exact
results obtained with Monte Carlo simulation (MCS) with the approximation
using fragility curves (FC) with 3 and 6 fragility points for the construction of
the beta-h curve respectively (see Figure 7.11)
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7.2.3 Posterior analysis exact and with fragility curves

Table 7.5 presents the results of the posterior analysis for both the exact MCS and the approx-
imation with beta-h curves with 3 and 6 fragility points respectively. Note that the beta-h curve
for the observation in Figure 7.12 lies slightly above the assessment curve, as we assume the
seepage length at the time of the observation to be larger (∆L = 10 m).

Figure 7.12: Example 2: Beta-h curves for assessment and observation (∆L = 10 m)

Similar to the prior analysis, also the posterior reliability indices computed with the approxi-
mation are slightly overestimated with respect to the exact MCS results for 3 fragility points.
The refined grid of 6 fragility points in turn provides virtually exact results. Furthermore, it is
noteworthy that the effect of reliability updating is less pronounced, if we assume the structure
was stronger at the time of the observation than it is now (∆L = 10 m), which is plausible.

∆L = 10 ∆L = 0
MCS FC MCS FC

3 points
PosteriorP (F |ε) 2.7 · 10−3 3.5 · 10−3 8.0 · 10−4 1.3 · 10−3

β 2.78 2.69 3.14 3.01

6 points
PosteriorP (F |ε) 2.7 · 10−3 2.5 · 10−3 8.0 · 10−4 1.0 · 10−3

β 2.78 2.80 3.14 3.10

Table 7.5: Example 2: Posterior reliability estimates with and without difference between
assessment and observation (∆L = 10 m) comparing Monte Carlo simulation
(MCS) and the approximation with fragility curves (FC) for 3 and 6 fragility
points as shown in Figure 7.12

Figure 7.13 depicts the prior and posterior joint probability density functions (JPDF) of the
seepage length and the Bligh model factor. Comparing the prior and the posterior illustrates
that the posterior JPDF is practically truncated and the probability density in the implausi-
ble parameter space given the observation becomes zero, while the probability mass is re-
distributed over the feasible region.
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Figure 7.13: Example 2:Prior (left figure) and posterior (posterior figure) JPDF plot of a
two-dimensional histogram for mB and L parameters
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7.3 Example 3: Simple slope stability problem

As opposed to examples 1 and 2 with simple closed-form performance functions, this example
treats a more complex implicit performance function for slope stability with multiple load and
resistance variables.

7.3.1 Input data and prior reliability

Figure 7.14 illustrates the geometry and main characteristics of the case at hand. The con-
templated slope stability problem consists of a clay dike (Clay ) on a clay blanket (Claylayer ) on
top of a sand aquifer (Aquifer ). For the sake of simplificity, all stability analyses are done with
a fixed slip circle (with the lowest stability factor for mean values of all stochastic variables).

Figure 7.14: Example 3: Simple slope stability problem with clay dike on clay blanket on
top of a sand aquifer (the white circles demonstrate the yield stress points
as defined in D-Geostability).

Name Unit Description Distribution Parameters

Clay_Su [-] undrained shear Lognormal µ = 0.35, σ = 0.10
strength ratio

Claylayer_Su [-] undrained shear Lognormal µ = 0.30, σ = 0.03
strength ratio

Clay_m [-] strength increase Lognormal µ = 0.90, σ = 0.02
exponent

Claylayer_m [-] strength increase Lognormal µ = 0.90, σ = 0.02
exponent

Aquifer_c [kN/m2] cohesion Deterministic 0.0
Aquifer_phi [◦] friction angle Deterministic 35◦

Clay_yield [kN/m2] yield stress Lognormal µ = 38, σ = 6
Claylayer_under_yield [kN/m2] yield stress Lognormal µ = 137, σ = 6
Claylayer_next_yield [kN/m2] yield stress Lognormal µ = 28, σ = 6
Water level [m] outside water level Gumbel shift = 1.5, scale = 0.4
md [-] model uncertainty Lognormal µ = 0.995, σ = 0.033

Table 7.6: Example 3: Probability distributions of variables.

The performance function we evaluate in the reliability analysis is:

g = SF ·md − 1 (7.4)

where SF is the stability factor that is retrieved from the D-GeoStability1 and md is the
model uncertainty. The dike material and the clay blanket are modeled using undrained shear

1The exact computation procedures and definition of the stability factor can be found in the D-Geostability
manual, which can be downloaded from https://download.deltares.nl/en/download/geotechnical-software/.
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strength, whereas the shear strength of the aquifer is modeled using Mohr-Coulomb. The
input parameters are given in Table 7.6.

As a benchmark, the probability of failure was estimated using Monte Carlo simulation (MCS)
with 20, 000 samples. More precisely, Monte Carlo sampling of all stochastic variables, in-
cluding the water level, results in a prior reliability index of 2.15, which corresponds to a
probability of failure of 1.6 · 10−2.

7.3.2 Prior analysis with fragility curves

Figure 7.15 depicts the fragility curve for the assessment conditions. One of the main ad-
vantages of using fragility curves in a probabilistic slope stability analysis is that the fragility
points are calculated for fixed water levels and, hence for a fixed (steady state) pore pressure
field. For a fixed pore pressure field, experience shows that the critical sliding plane (i.e. with
lowest SF ) is rather stable even for changing soil parameters, which often allows us to work
with a fixed slip plane in all FORM iterations.

Figure 7.15: Example 3: The fragility curve (beta-h curve) for the assessment conditions.

Table 7.7 shows that the prior reliability index as estimated using MCS and approximation
using fragility curves (FC) are very close. The small approximation error can be due to (a) the
approximation by the fragility curve and/or (b) the MCS sample size (which can be tested by
repeating the experiment several times).

β D-Geo Stability calculations

MCS (exact) 2.15 20,000
FC 2.07 250

Table 7.7: Example 3: Prior reliability indices from MCS and the approximation with
fragility curves (FC), including the number of D-GeoStability analyses per-
formed per method.
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7.3.3 Posterior analysis exact and with fragility curves

The observed survived water level is considered deterministic: hobs = 2 m. For both reliability
updating approaches (MCS and FC), in general we would need to configure two D-Geostability
models, one for the assessment conditions and one for the observed conditions. In the current
example, the only difference is the water level, so we only need to estimate one fragility curve.
In general, many conditions can differ between the two models to accomodate known changes
between the observation and the assessment (e.g. the traffic load).

Table 7.8 shows the posterior results of both methods, MCS and FC, which compare very
well, even though the approximation with fragility curves requires substantially less stability
analyses. Note that the approach actually involves two approximations, the linearization of
the beta-h curves and the estimation of the fragility points by FORM.

β D-Geo Stability calculations

MCS (exact) 3.05 100,000
FC 3.05 500

Table 7.8: Example 3: Posterior reliability indices from Monte Carlo simulation (MCS)
and the approximation with fragility curves (FC), including the number of D-
GeoStability calculations.
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7.4 Example 4: Correlation between assessment and observation

This section investigates the effect of correlation between the resistance in assessment and
observation as explained in section 4.5 considering the simple linear performance function
from Example 1 (g = hc − h). In first instance, we will used the exact same parameters as
in section 7.1 and contemplate a range of correlation coefficients ρ (between hc and hc,obs).
Subsequently, we will change the example parameters in a sensitivity study.

7.4.1 Base case

The prior reliability index of the base case of 2.0 is the same as for Example 1 (section 7.1).
Accordingly, the posterior reliability index assuming perfect auto-correlation in time of the
critical water levels was assumed (i.e. ρ = 1) amounts to 2.35. Figure 7.16 depicts how the
posterior reliability index decreases with decreasing correlation coefficient ρ, approaching the
prior value (no updating effect) as the correlation approaches zero.

(a) Histograms of the prior realizations (MCS) (b) Posterior reliability index

Figure 7.16: Example 4: Influence of the correlation coefficient ρ on the posterior reliabil-
ity forhobs = 5 (with hc ∼ N(6,

√
2) and h ∼ N(2,

√
2).

Figure 7.16 also provides a comparison of the approach with fragility curves with full Monte
Carlo simulation of the underlying basic random variables. The results are virtually the same.
Figure 7.17 illustrates that there is a gradual increase in the posterior reliability index with
increasing correlation coefficient also for lower and higher observed loads.

Figure 7.17: Example 4: Influence of the correlation coefficient ρ on the posterior reliabil-
ity for different observed loads (with hc ∼ N(6,

√
2) and h ∼ N(2,

√
2).
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7.4.2 Variations

In this section we vary the mean and standard deviation of the critical water level (hc) and the
observed water levels in order to examine the influence of the correlation between assessment
and observation for different reliability levels and different relative contributions of load and
resistance to the total uncertainty.

Lower standard deviation of the load

The standard deviation of the load (h) is reduced compare to the base case. The results
are shown in Figure 7.18. The increase in posterior reliability index is less gradual with in-
creasing correlation coefficient compared to Figure 7.17. It seems that with a relatively large
contribution of the resistance, the so-called "hockey stick curve" is resembled here.

(a) Histograms of the prior realizations (MCS) (b) Posterior reliability index for different hobs

Figure 7.18: Example 4: Influence of the correlation coefficient ρ on the posterior reliabil-
ity for different observed loads (hc ∼ N(6,

√
2) and h ∼ N(2, 0.5).

Higher mean resistance

A higher mean value of the resistance (keeping the standard deviation as in the base case)
leads to a higher prior reliability index. The posterior results are shown in ??. The behavior is
similar to the previous variations.

(a) Histograms of the prior realizations (MCS) (b) Posterior reliability index for different hobs

Figure 7.19: Example 4: correlation coefficient ρ analysis for the performance function
g = hc − h, where hc ∼ N(6,

√
2) and h ∼ N(2, sqrt2).
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Summary of the relative effects

The influence of the correlation coefficient on the posterior reliability is summarized in Figure
7.20 for various variations of the parameters. Depending on the relative contributions of load
and resistance to the total uncertainty there is a more or less pronounced or gradual effect of
the correlation.

Figure 7.20: Example 5: Reliability updating effect as a function of the correlation coeffi-
cient ρ. The updating effect on the vertical axis is defined as 1 standing for
the effect (difference between prior and posterior reliability index) achieved
with correlation 1, and zero with zero correlation.

7.5 Concluding remarks for all examples

The examples in this chapter have illustrated the application of the theory described in this
report to problems of varying complexity and highlighting different aspects each one. We point
out the following observations:

• The approximation with fragility or beta-h curves produces an exact result for a linear
performance function with a normal-distributed resistance term (see example 1).

• The method can also be applied to multi-variate, non-linear problems with non-normal
distributions. The error in the approximation depends on the discretization of the beta-h
curves (number and location of fragility points, see example 2).

• Building beta-h curves for slope stability problems with a limited number of fragility points
using FORM requires substantially less computations than sampling based reliability meth-
ods like Monte Carlo simulation. Note that FORM often exhibits convergence problems
when applied to conditions with varying water levels (and pore pressure fields), which is
avoided in analyses conditioned on fixed water levels (see example 3). Using FORM does
introduce an error, though, which could be avoided or reduced by using other reliability
methods.

• The correlation between the resistance in assessment conditions and the resistance in ob-
servation conditions clearly impacts the posterior reliability. Decreasing correlation results
in a lower effect by reliability updating. It is therefore recommended to always estimate
and take into account the correlation explicitly.

For more realistic conditions in terms of the level of complexity and detail of slope reliability
analysis of dikes refer to the accompanying case study report (Schweckendiek et al., 2016).
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8 Conclusion

This report has described how survival of observed load conditions can be taken into account
quantitatively in general and in particular for slope stability of dikes. In particular, a simplified
approach with fragility curves has been introduced, building upon the work by Calle (2005) and
the approach outlined in ENW (2009). Working with fragility curves is common practice for
slope reliability analyses in the Netherlands (e.g. VNK2-project). In this sense, the approach
with fragility curves is a straightforward extension of the prior reliability analysis.

Furthermore, we have shown in chapter 2 how the results can be used in the Dutch safety
assessment framework for primary flood defenses. In essence, the updated probability of
failure obtained from the analysis can be directly compared to the acceptable probability of
failure for a specific dike section as defined in WBI-2017.

The presented method can handle the distinction between epistemic (reducible) and aleatory
(irreducible) uncertainties and it can accommodate the (known) differences between the con-
ditions at the time of the observation and the conditions at the time of the assessment explicitly.
The only clear limitation of the proposed approximation with fragility curves in the context of
slope stability analyses is that the failure mechanism, in this case the critical sliding plane,
needs to be essentially the same in the observations and assessment conditions.

The four fictitious benchmark examples in chapter 7 have illustrated the application of the
method to cases with a varying degree of complexity, each highlighting different aspects of
the method, including an example of a simple dike slope stability problem. All examples
confirm that the results obtained with the simplified approach with fragility curves reasonably
match the results by conventional reliability methods such as Monte Carlo simulation.

The present work is part of a larger development effort by Rijkswaterstaat to enable practition-
ers to use reliability updating in Dutch safety assessment practice. Besides this background
report, case studies will be elaborated and a manual as well as software will be produced to
provide practitioners with all necessary components. The application to the first two real life
case studies with a realistic level of detail and complexity for a safety assessment of Dutch
dikes is described in a separate report (Schweckendiek et al., 2016).

We have the following main recommendations for further method development and opera-
tionalisation:

1 For further testing of the applicability and robustness of the approach it is necessary to
investigate more case studies with varying characteristics which are representative for
the majority of the dikes in the primary Dutch flood protection system. Additional cases
will also help to obtain better insight into how much impact can be expected in which
conditions. Obvious candidates are dikes in tidal estuaries, canal dikes and river dikes in
the upstream area (in Dutch: bovenrivierengebied).

2 Reliability updating can also have a significant impact for other failure mechanisms dom-
inated by epistemic (knowledge) uncertainties. This is typically the case for geotechnical
failure modes such as internal erosion (piping).

3 The approach with fragility curves is an approximation which brings about limitations.
Other methods should be investigated in order to use reliability updating to its full poten-
tial, including updating of the (joint) probability distribution of the basic random variables.
While some more advanced reliability approaches may not be suitable for practical ap-
plication, they can provide valuable insights and benchmark results for more practicable
approximate methods. A particularly promising method is Subset Simulation, which may
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be able to combine the advantages of using sampling methods directly with the limit state
models and practical applicability.

4 The current description of the approach has shortcomings for situations with multiple ex-
ternal loads (e.g. water level and traffic load) with different scales of fluctuation in time. To
address such conditions, a suitable probabilistic load model including temporal correlation
needs to be implemented.

50 of 70 Reliability updating for slope stability of dikes



References

Bayes, T., 1763. “An Essay towards solving a Problem in the Doctrine of Chances.” Biometrika
45: 293–315.

Calle, E. O. F., 2005. “Observed strength of dikes (in Dutch: Bewezen sterkte bij dijken).”
Geotechniek 2005 (1).

Deltaprogramma, 2014. “Synthesedocument achtergrondrapport B1 bij Deltaprogramma
2015 - Synthesedocument deelprogramma Veiligheid.”

Duinen, A., 2015. Modelonzekerheidsfactoren Spencer-Van der Meij model ongedraineerder
schuifsterkte. Tech. rep.

ENW, 2009. Technnisch Rapport Actuele Sterkte bij Dijken. Tech. rep., Expertise Netwerk
Waterveiligheid.

IVW, 2011. Derde toets primaire waterkeringen. Tech. rep., Inspectie van Verkeer en Water-
staat.

Kanning, W., 2012. “The weakest link.” (July).

Kanning, W. and M. van der Krogt, 2016. Pore water pressures for slope stability. Tech. rep.,
Deltares memo number 1230090-034-GEO-0008.

Margo, D., A. Harkness and J. Needham, 2009. Managing Our Water Retention Systems -
Levee Screening Tool. Tech. rep., USSD.

Rijkswaterstaat, 2014. The National Flood Risk Analysis for the Netherlands. Tech. rep.,
Rijkswaterstaat VNK2 Project Office.

Roscoe, K., A. Hanea and A. Vrouwenvelder, 2016. “Levee system reliability modeling: The
length effect and Bayesian updating.” Structural Safety (submitted.

Schweckendiek, T., 2014. On Reducing Piping Uncertainties - A Bayesian Decision Approach.
Phd thesis, Delft University of Technology, Delft.

Schweckendiek, T., A. Teixeira, M. van der Krogt and W. Kanning, 2016. Reliability updating
for slope stability of dikes - Test cases report. Tech. rep., Deltares report number 1230090-
037-GEO-0001.

Schweckendiek, T., A. Vrouwenvelder and E. Calle, 2014. “Updating piping relia-
bility with field performance observations.” Structural Safety 47: 13–23. DOI
10.1016/j.strusafe.2013.10.002.

Schweckendiek, T., A. C. W. M. Vrouwenvelder, E. O. F. Calle, W. Kanning and R. B. Jongejan,
2012. “Target Reliabilities and Partial Factors for Flood Defenses in the Netherlands.” In
P. Arnold, G. A. Fenton, M. A. Hicks and T. Schweckendiek, eds., Modern Geotechnical
Codes of Practice - Code Development and Calibration, pages 311–328. Taylor and Francis.

Straub, D., 2014. “Value of information analysis with structural reliability methods.” Structural
Safety 49 (July 2014): 75–85. DOI 10.1016/j.strusafe.2013.08.006, ISSN 01674730.

Straub, D. and I. Papaioannou, 2014. “Bayesian Updating with Structural Reliability Methods.”
Journal of Engineering Mechanics 141 (3): 014134–1–13.

Reliability updating for slope stability of dikes 51 of 70



1230090-033-GEO-0001, Version 03, 22 November 2016, FINAL

Vanmarcke, E., 2011. “Risk of Limit-Equilibrium Failure of Long Earth Slopes: How it Depends
on Length.” In Proceedings of Geo-Risk 2011, Atlanta, USA, 609. ASCE, Atlanta.

Vrouwenvelder, A. C. W. M., 2006. “Spatial effects in reliability analysis of flood protection
systems.” In International Forum on Engineering Decision Making. Lake Louise, Canada.

Zhang, J., L. M. Zhang and W. H. Tang, 2011. “Slope Reliability Analysis Considering Site-
Specific Performance Information.” Journal of Geotechnical and Geoenvironmental Engi-
neering 137 (3): 227–238. ISBN 1090-0241/2011/3-227.238.

Zhang, L. M., 2004. “Reliability Verification Using Proof Pile Load Tests.” Journal of Geotech-
nical Engineering and Geoenvironmental Engineering 130 (11): 1203–1213.

52 of 70 Reliability updating for slope stability of dikes



APPENDIX

Reliability updating for slope stability of dikes 53 of 70



1230090-033-GEO-0001, Version 03, 22 November 2016, FINAL

54 of 70 Reliability updating for slope stability of dikes



A Length effect prior and posterior

A.1 Problem statement

This example examines the differences between prior and posterior length effect (for the prin-
ciples of the length effect refer to Kanning (2012) or Schweckendiek et al. (2012)). The
proposed approach treats the length-effect in an implicit fashion through the reliability tar-
get assigned to a cross section (see section 2.3). The implicit assumption made is that the
posterior length effect is not greater than the prior length effect, at least not greater than the
length-effect accounted for in the derivation of the target reliability.

Similar to the explanation in section 2.3, we can account for the length effect in deriving the
target probability of failure for a cross section by

Pcs < Pcs,req =
Psegment

1 + L
leq

=
Psegment

LE
(A.1)

where we define the so-called length-effect factor LE as the ratio of the failure probabilities
of a segment (of finite length) and of a cross section. In the remainder of this appendix we will
examine how LE changes with reliability updating.

A.2 Approach

A.2.1 Limit state

To support the argument that the length effect is not (much) greater a-posteriori than a-priori
we use the simplified limit state used throughout this report also for fragility curves:

g = hc − h (A.2)

where hc is the critical water level (i.e. the water level at failure) and h the water level.

A.2.2 Spatial variability

In terms of spatial variability we suppose that the water level has a very long auto-correlation
distance (practically infinite), allowing us to model h as a simple random variable. On the other
hand, we model hc as a one-dimensional (Gaussian) random field with scale of fluctuation θhc .

A.2.3 Operational limit state definitions

For the analysis we simulate i = 0...n discrete cross sections of the random field of the
critical water level, resulting in the values hc,i. The cross section analysis is done in the first
cross section of the random field, i.e. with hc,0.

The failure definitions for the cross section and for the random field are defined as follows:

• Cross section: hc,0 < h.
• Random field: ∪ihc,i < h (i.e. failure of any cross section in the segment implies failure

of the segment).
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For the posterior analysis, we also need to define the evidence for both cross section and
random field:

• Cross section: hc,obs,0 > hobs
• Random field: hc,obs,i > hobs (i.e. all cross sections in the realization of the random field

need to comply with the observed water level for the evidence to be true).

In other words, we discard all random field realizations for which at least one point does not
meet the (cross sectional) criterion.

These definitions allow us to compute the prior and posterior probabilities of failure for both
the cross section and the random field.

A.2.4 Prior and posterior length-effect

The length-effect is defined here as the ratio of the probability of failure in a one-dimensional
random field (i.e. segment) divided by the probability of failure of the cross section. Con-
sequently, we can define the prior and posterior length effect, LEprior and LEposterior, as
follows:

LEprior = Pf,rf,prior/Pf,cs,prior

LEposterior = Pf,rf,posterior/Pf,cs,posterior

(A.3)

The prior probabilities of failure for a random field and Pf,rf,prior and for a cross section
Pf,cs,prior can also be calculated or approximated with the following analytical expressions for
the current example (assuming Gaussian random variables):

Pf,cs,prior = Φ (−βprior) with βcs,prior =
µhc − µh√
σ2
hc

+ σ2
h

(A.4)

Pf,rf,prior = Pf,cs,prior ·

(
1 +

L

leq

)
with leq =

θhc

√
π

βprior
(A.5)

where L is the segment length and leq is the equivalent auto-correlation length.
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A.3 Example (base case)

First, the prior and posterior reliability index and length effect are calculated for a base case,
from which variations of several parameters will be made as sensitivity studies in the sequel.
The input parameters for the base case are presented in Tables B.1 and A.2.

Symbol Unit Description Distribution Mean Standard deviation

hc [m]+REF critical water level Normal 9
√

2

h [m]+REF water level Normal 2
√

2
hobs [m]+REF observed water level Deterministic 7 N/A
hc,obs [m]+REF critical water level Normal 10

√
2

at observation

Table A.1: Input parameters for the base case of the study into the prior and posterior
length-effect

θhc , correlation length (in x-direction) 100 m
L (dike length) 1000 m
cellsize 20 m

Table A.2: Correlation length, dike length and cellsize for random field generation in the
base case

Table A.3 contains the results of the prior and posterior reliability index and the length-effect.
The following observations can be made:

• The reliability index for the random field is lower than for the cross section (which is the
whole point of the length-effect);

• The analytical expressions give good approximations of the prior reliability indices;
• The posterior length effect is roughly the same as the prior length effect in this particular

case.

β βanalytical βrf βrf,analytical LE

prior 3.49 3.50 2.64 2.59 17.5
posterior 3.87 - 3.13 - 15.8

Table A.3: Prior and posterior reliability indices and length-effect factors for the base case

Figure A.1 illustrates four realizations of the random fields for this example. Note that the
realizations of the assessment conditions and the observation conditions are fully correlated,
resulting in virtually parallel fields.
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Figure A.1: Prior and posterior length effect factor and reliability indices
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A.3.1 Variation 1: Correlation length

Table A.4 contains the results for variations of the correlation length (θhc). The length effect
LE is plotted in Figure A.2. We observe the following:

• The length effect decreases with increasing correlation length (well-known effect).
• The posterior length effect is less than or roughly equal to the prior, more specifically:

- for low correlation lengths the posterior length effect is lower than the prior;
- for high correlation lengths, the posterior length effect is roughly equal to the prior.

Notice that for increasing correlation length the length-effect virtually vanishes and so do the
differences between prior and posterior. The interesting range for stability analyses will be
between roughly 50 m and 200 m, though.

Figure A.2: Prior and posterior length effect factors and reliability indices for variations of
the correlation length (µhc = 9 and σhc =

√
2)

β βrf LE
10 prior 3.51* 2.03 96.5
(cellsize=2) posterior 3.85* 2.85 37.1
20 prior 3.51 2.22 59.0
(cellsize=4) posterior 3.87 2.98 26.7
50 prior 3.51 2.47 29.9
(cellsize=10) posterior 3.85 3.13 14.7
100 prior 3.49 2.64 17.5
(cellsize=20) posterior 3.87 3.13 15.8
200 prior 3.52 2.86 10.0
(cellsize=40) posterior 3.88 3.36 7.3
1000 prior 3.62 3.30 3.3
(cellsize=200) posterior 3.89 3.62 2.9
*) Variation calculated with a maximum COV (Pf ) of 0.1, else 0.05.

Table A.4: Prior and posterior length effect factors and reliability indices for variations of
the correlation length (µhc

= 9 , σhc
=
√

2 and hobs = 7)
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A.3.2 Variation 2 - Higher standard deviations

Variation 2 involves variations with higher standard deviations of hc. In order to have a high
reliability level, we need rather higher mean values as well. Notice that relatively flat beta-h
curves as sometimes found for dike stability often represent a relatively large uncertainty in
the resistance term (i.e. the critical water level), which would be reflected by large standard
deviations. The results of the analysis are shown in Figure A.3 which depicts the length effect
and reliability for several variations of mean and standard deviation. We observe in most
cases the posterior length effect is comparable or slightly less than the prior, except for the
combination with a very high standard deviation, where the posterior length-effect factor about
twice as large as the prior length-effect factor.

Figure A.3: Prior and posterior length effect factors and reliability indices for variations of
the mean and standard deviation of the resistance (correlation length 100 m)

A.4 Conclusion

Overall we see that the posterior length-effect is smaller or comparable to the prior, except for
very high standard deviations of the resistance (critical water level). The implications for the
proposed approach are discussed in section 2.3.
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B Reliability updating with discrete scenarios

This appendix describes algorithms and benchmarks for working with discrete scenarios.

B.1 Algorithms Integrated Monte Carlo approach (IMC)

This section describes algorithms to implement the reliability updating approach with fragility
curves as explained in the main report (section 5.3.3) with discrete scenarios using a fully
integrated Crude MCS approach to evaluate

P̂ (F |ε) =

∑
i Fi · εi∑

i εi
=

∑
i 1[hc,i < hi] ·1[hc,obs,i > hobs]∑

i 1[hc,obs,i > hobs]
(B.1)

N assessment scenarios and M observation scenarios (uncorrelated)

For each MCS realization i (i = 1...n):

1 sample water level hi
2 sample assessment scenario number j (j = 1...N )
3 sample observation scenario number k (k = 1...M )
4 sample standard normally distributed variable u and with it

4.1 determine hc,i from the fragility curve of assessment scenario Ej

4.2 determine hc,obs,i from the fragility curve of assessment scenario Eobs,k

5 evaluate Fi = 1[hc,i < hi] and εi = 1[hc,obs,i > hobs]

N assessment scenarios and M observation scenarios (all fully correlated)

For each MCS realization i (i = 1...n):

1 sample water level hi
2 sample assessment scenario j (j = 1...N )
3 observation scenario is equal to assessment scenario k = j
4 sample standard normally distributed variable u and with it

4.1 determine hc,i from the fragility curve of assessment scenario Ej

4.2 determine hc,obs,i from the fragility curve of assessment scenario Eobs,k

5 evaluate Fi = 1[hc,i < hi] and εi = 1[hc,obs,i > hobs]

N assessment scenarios and M observation scenarios (mixed fully correlated and
uncorrelated)

For each MCS realization i (i = 1...n):

1 sample water level hi
2 sample assessment scenario j (j = 1...N )
3 sample observation scenario number k (k = 1...M )
4 IF observation scenario is fully correlated with assessment scenario, THEN k = j
5 sample standard normally distributed variable u and with it

5.1 determine hc,i from the fragility curve of assessment scenario Ej

5.2 determine hc,obs,i from the fragility curve of assessment scenario Eobs,k

6 evaluate Fi = 1[hc,i < hi] and εi = 1[hc,obs,i > hobs]
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B.2 Benchmark examples

The aim of the present examples is to illustrate the theory of handling discrete scenarios as
described in chapter 5 for a simplified example. Therefore, this benchmark example considers
a base case similar to the one in Example 1, but now with 3 discrete scenarios for the proba-
bility distribution of the resistance, both for assessment and observation. The analysis follows
the the two-stage procedure which is compared to the results of an integrated Monte Carlo
analysis (IMC) as presented in section 5.3.3 in order to demonstrate their equivalence. Dif-
ferent assumptions for the correlation between scenarios are considered in order to illustrate
the effects and differences.

B.2.1 Input data and example setup

The performance function is:

g = hc,i − h (B.2)

with hc,i being the critical water level (i.e. the water level at which the dike fails) conditional
on scenario i and h the water level. The water level follows a standard normal distribution
(h ∼ N(0, 1)). The distributions of the critical water levels for the different scenarios are
defined in Table B.1. Note that the resistance for the observation conditions is estimated to
be slightly higher than for the assessment.

Assessment Observation
Scenario µ σ Scenario probability µ σ Scenario probability

1 2.8 1.0 0.2 3.0 1.0 0.2
2 3.2 0.5 0.5 3.5 0.5 0.5
3 3.6 0.5 0.3 4.0 0.5 0.3

Table B.1: Parameters for the critical water level of three resistance scenarios for assess-
ment and observation

As discussed in section 3.3, time-invariant scenarios and scenarios representing aleatory
uncertainty require different treatment. We will consider three distinct cases:

• Case A: all scenarios are time-invariant (e.g. a case where all scenarios represent strati-
fication scenarios),

• Case B: all scenarios represent aleatory randomness (e.g. a case where all scenarios
represent different geohydraulic responses),

• Case C: a mixture of the above (see Table B.2).

Observation scenario
Assessment scenario Stratification Geohydraulic case 1 2 3

1 A 1 1 1 0
2 A 2 1 1 0
3 B 2 0 0 1

Table B.2: Dependence of scenarios in assessment and observation. 1 implies that the
combination of the occurrence of a scenario combination is possible; 0 implies
impossibility of the combination.

In order to include the sensitivity to the observed load, we consider two different observed
water levels: a water level with an annual exceedence probability of 1/100 (2.3 m+NAP) and
another with annual exceedence probability 1/1,000 (3.9 m+NAP). For the sake of computa-
tional efficiency all calculations were carried out using Monte Carlo with Importance Sampling
with a sampling distribution for the water level of N(1, 2) and a sample size of 106.
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B.2.2 Posterior analysis with two-stage procedure and integrated Monte Carlo

Case A: Time-invariant scenarios

For case A, the scenarios are time-invariant, meaning that scenario 1 in the assessment
corresponds to scenario 1 in the observation and so on. Table B.3 presents the prior and
posterior reliability estimates for the two different water level observations. The results of both
methods (two-stage and IMC) are in good agreement.

Prior
Posterior
Observation = 2.3 m Observation = 3.9 m

Two-stage IMC Two-stage IMC Two-stage IMC

Scenario 1 1.980 1.979 2.743 2.744 4.022 4.018
Scenario 2 2.862 2.862 2.906 2.905 3.815 3.816
Scenario 3 3.220 3.220 3.226 3.225 3.807 3.805
All scenarios 2.394 2.393 2.899 2.899 3.841 3.840

Table B.3: Prior and posterior reliability indices for case A with time-invariant scenarios

Case B: Aleatory scenarios

Case B uses the same parameters as case A, except we assume the scenarios to represent
aleatory uncertainty, implying that realizations in the assessment are independent of real-
izations in the assessment. Table B.4 shows the results in terms of the prior and posterior
reliability indices. Compared to case A case we observe the overall effect of reliability updat-
ing to be less, which is plausible. However, this is not the case for all scenarios individually; for
scenarios with relatively high reliability the effect of updating is larger than in case A. The rea-
son is that now there is a non-zero probability that the observation originated from a scenario
with a relatively high prior reliability index, which implies a significant load effect, resulting in
a relatively strong updating effect.

Prior
Posterior
Observation = 2.3 m Observation = 3.9 m

Two-stage IMC Two-stage IMC Two-stage IMC

Scenario 1 1.980 1.979 2.129 2.129 3.343 3.346
Scenario 2 2.862 2.862 2.953 2.954 3.579 3.580
Scenario 3 3.220 3.220 3.317 3.315 3.962 3.960
All scenarios 2.394 2.393 2.520 2.520 3.517 3.517

Table B.4: Prior and posterior reliability indices for case B without correlation between
assessment and observation

Case C: Mixed time-invariant and aleatory scenarios

In this case we contemplate a mixture of time-invariant and aleatory scenarios as defined
in Table B.2. When elaborating on the scenario probabilities, the scenarios become in fact
combinations of a scenario for the assessment and the observation, meaning that there are
five possible scenario combinations in this case. The probability of such a combination is
determined by P (Ei ∩ Eobs,j) = P (Ei|Eobs,j)P (Eobs,j) resulting in the values presented
in Table B.5.
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Scenario combination i− j P (Ei) P (Eobs,j) P (Eobs,j|Ei) P (Ei ∩ Eobs,j)

1− 1 0.2 0.2 0.29 0.06

1− 2 0.2 0.5 0.71 0.14

2− 1 0.5 0.2 0.29 0.15

2− 2 0.5 0.5 0.71 0.36

3− 3 0.3 0.3 1 0.3

Σ = 1

Table B.5: Scenario combinations and corresponding probabilities for case C

The resulting posterior reliability indices are shown in Table B.6. The overall updating effect
is, as expected, in between cases A and B.

Prior
Posterior
Observation = 2.3 m Observation = 3.9 m

Two-stage IMC Two-stage IMC Two-stage IMC
βS1,1 1.979 1.979 2.743 2.746 4.024 4.026
βS1,2 1.979 1.979 2.052 2.053 3.945 3.937
βS2,1 2.862 2.862 3.241 3.244 3.855 3.856
βS2,2 2.862 2.862 2.907 2.906 3.815 3.816
βS3,3 3.219 3.219 3.226 3.226 3.806 3.806
βtotal 2.393 2.394 2.564 2.565 3.843 3.844

Table B.6: Prior and posterior reliability indices for a case C (mixed correlation).

B.2.3 Discussion

The results show in all cases that the two-stage procedure and the integrated Monte Carlo
approach produce the same results. The advantage of the two-stage approach is that all
individual combinations of assessment and observation scenarios can be contemplated indi-
vidually and the number of the Monte Carlo samples per combination can be adjusted per
combination.

The differences between the cases highlight the importance of correlation assumptions for
discrete scenarios. The overall reliability updating effect is larger for correlated scenarios than
for non-correlated ones. However, per scenario the effects can be different as pointed out in
the discussion of case B.
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C Examples and Benchmarks

Example 1: g = h− hc (Matlab code incl. plots)

%% Benchmark example reliability updating (g = hc - h)
% by Timo Schweckendiek
% version: 29 March 2016
clear; close all; clc;

%% Input Parameters

% Prior distribution of the critical water level (resistance, Normal distributed)
mu_hc = 6; % mean value
sigma_hc = sqrt(2); % standard deviation

% Prior distribution of the water level (load, Normal distributed)
mu_h = 2; % mean value
sigma_h = sqrt(2); % standard deviation

% Observed water level (load)
h_obs = 5; % observed value
% P_exc = 1 - normcdf(h_obs, mu_h, sigma_h); % exceedance probability

% Observed resistance parameters
delta_hc = 1.0; % difference between observation and assessment
rho = 1; % correlation resistance between observation and future

% Number of realisations in Monte Carlo analyses
n = 1e+5;

% water levels for beta-h curve (discretization)
hgrid = [mu_h (mu_hc+mu_h)/2 mu_hc];

% Dummy variable (for plots etc.)
theta = mu_h-4*sigma_h : 0.1 : mu_hc+4*sigma_hc;

%% Prior distributions and observation
figure('name', 'Priors with observed water level');
plot(theta, normpdf(theta, mu_hc, sigma_hc), 'g-'); grid on; box on; hold on;
plot(theta, normpdf(theta, mu_h, sigma_h), 'r-');
plot([h_obs h_obs], [0 0.4], 'b-');
plot(theta, normpdf(theta, mu_hc + delta_hc, sigma_hc), 'b--');
xlabel('h, h_c'); ylabel('probability density');
legend('PDF resistance f(h_c)','PDF water level f(h)',...

'observed water level h_{obs}','PDF resistance at observation f(h_{c,obs})',...
'Location', 'NorthWest');

%% Prior probability of failure with Monte Carlo simulation (MCS)

% Random realisations of resistance and load
var_hc = sigma_hc .* randn(n, 1);
hc = mu_hc + var_hc;
h = mu_h + sigma_h .* randn(n, 1);

% Performance (limit state) function and probability of failure
g = hc - h; F = (g<0);
Pf = sum(F)/n; beta = norminv(1-Pf)

%% Scatter plot prior MCS
figure('name', 'Prior MCS');
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plot([-2 12], [-2 12], 'k-'); hold on; grid on;
plot(hc(g<0), h(g<0), 'r.');
plot(hc(g>=0), h(g>=0), 'b.');
xlabel('h_c'); ylabel('h');
legend('limit state','failure', 'non-failure');

%% Prior fragility curve
figure('name', 'Prior Fragility');
[hc_cdf,x] = ecdf(hc);
plot(x, hc_cdf, 'g-'); hold on; grid on; box on;
plot(theta, normpdf(theta,mu_h,sigma_h), 'r-');
xlabel('h, h_c'); ylabel('probability (density)'); % P(F|h), F(h_c), f(h)
axis([min(theta) max(theta) 0 1]); hold off;
legend('fragility curve P(F|h)=F(h_c)','PDF water level f(h)',...

'Location', 'NorthWest');

%% Prior analysis with approximated fragility curves (MCS)

% Determine beta per discrete water level
betagrid = norminv(1-normcdf(hgrid,mu_hc,sigma_hc));

% Plot beta-h curve
figure('name', 'Beta-h');
plot(hgrid, betagrid, 'ro'); hold on; grid on; box on;
plot(theta, interp1(hgrid,betagrid,theta,'linear','extrap'),'r--');
xlabel('h'); ylabel('\beta');
axis([min(theta) max(theta) -1 4]);
legend('fragility points','linear interpolation',...

'Location', 'NorthEast'); hold off;

% Simulate hc with fragility curve method
u = normrnd(0,1,n,1); % standard normal
hc_fc = interp1(betagrid,hgrid,u,'linear','extrap');

% Performance (limit state) function and probability of failure
F_fc = (hc_fc < h);
Pf_fc = sum(F_fc)/n; beta_fc = norminv(1-Pf_fc)

%% Histogram of realizations from fragility curve
figure('name', 'Hist');
[nhc,xout] = hist(hc_fc,50); %Compute histogram
bar(xout,nhc); hold on; grid on; box on;
plot(theta, normpdf(theta,mu_hc,sigma_hc)*trapz(xout,nhc),'r-');
xlabel('h_c'); ylabel('bin count');
legend('histogram','original PDF (scaled)',...

'Location', 'NorthWest'); hold off;

%% Posterior probability of failure with MCS (direct method) - exact

% Generate fully correlated resistance at observations
hc_obs = mu_hc + delta_hc + var_hc;

% Reliability updating
Eps = (hc_obs > h_obs);
Pf_post = sum(F & Eps) / sum(Eps); beta_post = norminv(1-Pf_post)

%% Posterior probability of failure with MCS (direct method) - exact

% Fragility curve at observation (difference in hc)
hgrid_obs = hgrid + delta_hc;

% Simulate hc_obs with fragility curve method (use same u as for assessment!)
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hc_obs_fc = interp1(betagrid,hgrid_obs,u,'linear','extrap');

% Posterior probability of failure
Eps_fc = (hc_obs_fc > h_obs); % % observation / evidence (binary vector)
Pf_post_fc = sum(F_fc & Eps_fc) / sum(Eps_fc);
beta_post_fc = norminv(1-Pf_post_fc)

%% Beta-h curves for observation and assessment
figure('name', 'Beta-h obs');
plot(hgrid, betagrid, 'ro'); hold on; grid on; box on;
plot(theta, interp1(hgrid,betagrid,theta,'linear','extrap'),'r--');
plot(hgrid_obs, betagrid, 'bo');
plot(theta, interp1(hgrid_obs,betagrid,theta,'linear','extrap'),'b-.');
xlabel('h'); ylabel('\beta');
axis([min(theta) max(theta) -1 4]);
legend('fragility points assessment','beta-curve assessment',...

'fragility points observation','beta-curve observation',...
'Location', 'SouthWest'); hold off;

%% Comparison posterior and prior resistance

figure('name', 'Post hc');

subplot(1,2,1)
bar(theta, hist(hc(Eps), theta)./(sum(Eps)/n)); grid on; box on; hold on;
plot(theta, hist(hc, theta), 'r-'); hold off;
xlabel('h_c'); ylabel('# of realisations');
legend('posterior','prior', 'Location', 'NorthWest');
title('exact');

subplot(1,2,2)
bar(theta, hist(hc_fc(Eps_fc),theta)./(sum(Eps_fc)/n)); grid on; box on; hold on;
plot(theta, hist(hc_fc, theta), 'r-'); hold off;
xlabel('h_c'); ylabel('# of realisations');
legend('posterior','prior', 'Location', 'NorthWest');
title('with fragility curves');

Example 2: g = mB
L
c
− h (Matlab code incl. plots)

%% Benchmark Bligh Rule
% by Timo Schweckendiek and Katerina Rippi
% version: 28 April 2016
clear; close all; clc;

%% Input Parameters

% Prior moments of the model factor and seepage length
mu_m = 1.76; % mean
sigma_m = 1.69; % standard deviation
mu_L = 50; % mean
sigma_L = 2.5; % standard deviation
c = 18; %[-] percolation coefficient (deterministic)

% Distribution parameters of the load (water level)
alpha_h = 0.53; %location parameter in gumbel (mu)
beta_h = 0.406; %scale paramater in gumbel (sigma)

% Observed water level (load) and resistance parameters (from new estimations)
% m_obs = 1.2; % [-] (model factor)
% L_obs = 50; % [m] (seepage length)
h_obs = 2.4; % observed value
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delta_m = 0.0; % difference between observation and assessment
delta_L = 10; % difference between observation and assessment

% Number of realisations in Monte Carlo analyses
n = 1e+5;

%% Prior probability of failure with Monte Carlo simulation (MCS)

% Random realisations of the model factors
[lambda_m, zeta_m] = lognpar(mu_m, sigma_m);
m = lognrnd(lambda_m, zeta_m, n, 1); % mu lognormally distributed
L = normrnd(mu_L, sigma_L, n, 1); % L normally distributed
m_obs = lognrnd(lambda_m+delta_m, zeta_m, n, 1); % mu lognormally distributed
L_obs = normrnd(mu_L+delta_L, sigma_L, n, 1); % L normally distributed

% Resistance hc
hc = m.*L./c;
mu_hc = mean(hc);
sigma_hc = std(hc);

% Random realisations of the load, h
h = gevrnd(0,beta_h, alpha_h, n, 1);

% Illustration of observed value with prior distributions
figure('name', 'Prior PDFs');
m_grid = 0:0.05:6;
L_grid = 30:0.3:80;
subplot(1,2,1)
plot(m_grid, ksdensity(m, m_grid), 'b-', 'LineWidth', 2);
hold on; grid on; box on;
legend('PDF model uncertainty, f(m)');
xlabel('m [-]'); ylabel('probability density');
subplot(1,2,2)
plot(L_grid, ksdensity(L, L_grid), 'b-', 'LineWidth', 2);
hold on; grid on; box on;
plot(L_grid, ksdensity(L_obs, L_grid), 'r-', 'LineWidth', 2);
legend('PDF seepage length, f(L)','PDF seepage length at observation, f(L_{obs})');
xlabel('L [m]'); ylabel('probability density');

figure('name', 'Priors with observed head differences')
hc_grid = -2.0:0.05:10.0;
plot(hc_grid, ksdensity(hc, hc_grid), 'k-', 'LineWidth', 2);
hold on; grid on; box on;
plot(hc_grid, ksdensity(h, hc_grid), 'g-', 'LineWidth', 2);
hold on; grid on; box on;
plot([h_obs h_obs], [0 1], 'b--', 'LineWidth', 2);
legend('PDF critical head difference, f(h_c)', 'PDF head difference, f(h)', 'observed head difference, h*');
xlabel('h, h_c [m]'); ylabel('probability density');
hold off;

% Performance (limit state) function and probability of failure
g = hc - h;
Pf = sum(g<0) / n
beta = norminv(1-Pf)

% Scatter plot
figure('name', 'Prior MCS');
plot([-2 8], [-2 8], 'k-');
hold on; grid on;
plot(hc(g<0), h(g<0), 'r.');
plot(hc(g>=0), h(g>=0), 'b.');
xlabel('h_c [m]'); ylabel('h [m]');
legend('limit state','failure', 'non-failure');
axis([-1 8 -1 8]); hold off;
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%% Posterior probability of failure with MCS (direct method)

%Generate fully correlated resistance at observations
mc_obs = m + delta_m;
Lc_obs = L + delta_L;
hc_obs = mc_obs.*Lc_obs./c;

% Observation function
Eps = h_obs-hc_obs;

% Posterior probability of failure
Pf_post = sum(g<0 & Eps<0) / sum(Eps<0)
beta_post = norminv(1-Pf_post)

% Scatter plot
figure('name', 'Posterior MCS');
plot(hc_obs(g>=0), h(g>=0), 'b.'); hold on; grid on;
plot(hc_obs(Eps>=0), h(Eps>=0), 'g.');
plot(hc_obs(g<0 & Eps<0), h(g<0 & Eps<0), 'r.');
%Plot limit state:this line has a 45 degrees inclination only if the
%difference between observation and assessment (deltas) is zero
plot([0.85 10000], [0 10000], 'k-'); %
plot([h_obs h_obs],[-1 10000],'k--');
xlabel('h_{c,obs} [m]'); ylabel('h [m]');
legend('non-failure, posterior', 'no match with observation',...

'failure, posterior',...
'limit state', 'observation');

axis([-1 8 -1 6]); hold off;

%Fragilty curves
figure('name', 'Prior and Posterior fragility curves')
plot(hc_grid, ksdensity(hc_obs(Eps<0), hc_grid, 'support','positive','function', 'cdf'), 'b-', 'LineWidth', 2); % for delta=0, hc_obs=hc
hold on; grid on; box on;
plot(hc_grid, ksdensity(hc, hc_grid, 'support','positive','function','cdf'), 'r-', 'LineWidth', 2);
legend('F_{h_c|\epsilon} (h)', 'F_{h_c} (h)');
xlabel('h [m]'); ylabel('F(h)');

% Prior vs. posterior m and L parameters
figure('name', 'Prior vs. Posterior m and L parameters');
subplot(1,2,1)
hist3([m L], {0:.1:6; 40:1:60});
xlim([0 4])
set(gcf,'renderer','opengl');
set(get(gca,'child'),'FaceColor','interp','CDataMode','auto');
view(2); xlabel('m [-]'); ylabel('L [m]');
colorbar;
subplot(1,2,2)
hist3([m(Eps<0) L(Eps<0)], {0:.1:6; 40:1:60});
xlim([0 4])
set(gcf,'renderer','opengl');
set(get(gca,'child'),'FaceColor','interp','CDataMode','auto');
view(2); xlabel('m [-]'); ylabel('L [m]');
colorbar;

%% Prior probability of failure with fragility curves (FC)

%==========================
% hgrid_fc with more points
%==========================
mult = 1;
steps = 6; % number of points
for i = 1:steps

hgrid_fc(i) = mu_hc-sigma_hc*mult;
mult = mult - 1/steps;

end
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%hgrid_fc = [mu_hc-sigma_hc mu_hc-sigma_hc/2 mu_hc];
for i = 1:length(hgrid_fc)

Pex_grid(i) = sum(hc < hgrid_fc(i))/n;
end
betagrid = norminv(1-Pex_grid);

figure('name', 'Beta-h');
plot(hgrid_fc, betagrid, 'ro'); hold on; grid on; box on;
plot(hc_grid, interp1(hgrid_fc,betagrid,hc_grid,'linear','extrap'),'r--');
xlabel('h [m]'); ylabel('\beta');
axis([min(hc_grid) max(hc_grid) -1 5]);
legend('fragility points', 'Fragility curve',...

'Location', 'NorthEast'); hold off;

% Simulate hc with fragility curve method
u = normrnd(0,1,n,1); % standard normal
hc_fc = interp1(betagrid,hgrid_fc,u,'linear','extrap');

% Performance (limit state) function and probability of failure
g_fc = (hc_fc < h);
Pf_fc = sum(g_fc)/n; beta_fc = norminv(1-Pf_fc)

%% Posterior probability of failure with fragility curves (FC)

%Resistance at observation (difference in m and L)
hc_delta = (m + delta_m).*(L + delta_L)./c;
mu_hc_delta = mean(hc_delta);
sigma_hc_delta = std(hc_delta);
%hgrid_obs = [mu_hc_delta-sigma_hc_delta mu_hc_delta-sigma_hc_delta/2 mu_hc_delta];

%===========================
% hgrid_obs with more points
%===========================
mult = 1;
steps = 6; % number of points
for i = 1:steps

hgrid_obs(i) = mu_hc_delta-sigma_hc_delta*mult;
mult = mult - 1/steps;

end

%Simulate hc_obs with fragility curve method
hc_obs_fc = interp1(betagrid, hgrid_obs, u, 'linear', 'extrap');

Eps_fc = (hc_obs_fc>h_obs);
Pf_post_fc = sum(g_fc & Eps_fc) / sum(Eps_fc);
beta_post_fc = norminv(1-Pf_post_fc)

% Beta-h curves for observation and assessment
figure('name', 'Beta-h obs');
plot(hgrid_fc, betagrid, 'ro'); hold on; grid on; box on;
plot(hc_grid, interp1(hgrid_fc,betagrid,hc_grid,'linear','extrap'),'r--');
plot(hgrid_obs, betagrid, 'bo');
plot(hc_grid, interp1(hgrid_obs,betagrid,hc_grid,'linear','extrap'),'b-.');
xlabel('h [m]'); ylabel('\beta');
axis([min(hc_grid) max(hc_grid) -1 5]);
legend('fragility points assessment','beta-curve assessment',...

'fragility points observation','beta-curve observation',...
'Location', 'SouthWest'); hold off;
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